2154: Crash的数字表格
Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 4958 Solved: 1811
[Submit][Status][Discuss]
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
4 5
Sample Output
122
【数据规模和约定】
100%的数据满足N, M ≤ 10^7。
【数据规模和约定】
100%的数据满足N, M ≤ 10^7。
HINT
Source
析:题意很明显就是
到就已经可以A掉本题了,当然还可以断续向下优化。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e7 + 5; const int maxm = 2e4 + 10; const LL mod = 20101009; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } LL f[maxn]; bool vis[maxn]; int mu[maxn], prime[maxn]; void Moblus(){ mu[1] = 1; int tot = 0; for(int i = 2; i <= n; ++i){ if(!vis[i]) prime[tot++] = i, mu[i] = -1; for(int j = 0; j < tot; ++j){ int t = i * prime[j]; if(t > n) break; vis[t] = 1; if(i % prime[j] == 0) break; mu[t] = -mu[i]; } } for(int i = 1; i <= n; ++i) f[i] = (f[i-1] + mu[i] * (LL)i * i) % mod; } inline LL cal(int x){ return 1LL * x * (x+1) / 2 % mod; } LL solve(int n, int m){ LL ans = 0; for(int i = 1, det; i <= n; i = det + 1){ det = min(n/(n/i), m/(m/i)); ans = (ans + (f[det] - f[i-1]) * cal(n/i) % mod * cal(m/i)) % mod; } return ans; } int main(){ scanf("%d %d", &n, &m); Moblus(); if(n > m) swap(n, m); LL ans = 0; for(int i = 1, det; i <= n; i = det + 1){ det = min(n/(n/i), m/(m/i)); ans = (ans + (LL)(det-i+1) * (i+det) % mod * solve(n/i, m/i) % mod * 10050505LL) % mod; } printf("%lld\n", (ans+mod)%mod); return 0; }