3529: [Sdoi2014]数表
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187
[Submit][Status][Discuss]
Description
有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。
Input
输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。
Output
对每组数据,输出一行一个整数,表示答案模2^31的值。
Sample Input
2
4 4 3
10 10 5
4 4 3
10 10 5
Sample Output
20
148
148
HINT
1 < =N.m < =10^5 , 1 < =Q < =2×10^4
Source
析:令F(i) 表示 i 的约数和,这个可以先预处理出来,然后先考虑没有 a 这个限制,令 g(i) 表示gcd(x,y)=i 数对(x,y)的个数,当然1<=x<=n,1<=y<=m,由莫比乌斯反演很容易就可以得到这个式子然后就能够得到
枚举每一个i,暴力更新i的倍数,然后处理前缀和,这样做是O(nlogn)的,有的a的限制,我们可以先把所有的处理都离线,然后将询问按照a排序,i按照F(i)排序,每次询问将所有F(i)<=a的i按照之前的方式插入 用树状数组维护前缀和即可,最后关于取模,这是一个比较特殊的,可以用自然溢出,然后最后答案进行按位与操作也就是ans&2147483647。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const int maxm = 2e4 + 10; const LL mod = 1e9 + 7LL; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } bool vis[maxn]; int prime[maxn]; int mu[maxn]; void Moblus(){ mu[1] = 1; int tot = 0; for(int i = 2; i < maxn; ++i){ if(!vis[i]) prime[tot++] = i, mu[i] = -1; for(int j = 0; j < tot && i * prime[j] < maxn; ++j){ int t = i * prime[j]; vis[t] = 1; if(i % prime[j] == 0) break; mu[t] = -mu[i]; } } } struct Node{ int val, id; bool operator < (const Node &p) const{ return val < p.val; } }; Node f[maxn]; struct Query{ int id, n, m, a; bool operator < (const Query &q) const{ return a < q.a; } }; Query q[maxm]; void init(){ for(int i = 1; i < maxn; ++i){ f[i].id = i; for(int j = i; j < maxn; j += i) f[j].val += i; } sort(f+1, f + maxn); } int sum[maxn]; void add(int x, int val){ while(x < maxn){ sum[x] += val; x += lowbit(x); } } int query(int x){ int ans = 0; while(x){ ans += sum[x]; x -= lowbit(x); } return ans; } int ans[maxn]; int solve(int n, int m){ if(n > m) swap(n, m); int ans = 0; for(int i = 1, det; i <= n; i = det + 1){ det = min(n/(n/i), m/(m/i)); ans += (query(det) - query(i-1)) * (n/i) * (m/i); } return ans & 2147483647; } void update(int x, int val){ for(int i = x, j = 1; i < maxn; i += x, ++j) add(i, mu[j] * val); } int main(){ Moblus(); init(); int T; scanf("%d", &T); for(int i = 0; i < T; ++i){ scanf("%d %d %d", &q[i].n, &q[i].m, &q[i].a); q[i].id = i; } sort(q, q + T); int j = 1; for(int i = 0; i < T; ++i){ while(f[j].val <= q[i].a) update(f[j].id, f[j].val), ++j; ans[q[i].id] = solve(q[i].n, q[i].m); } for(int i = 0; i < T; ++i) printf("%d\n", ans[i]); return 0; }