题意:给定两个数,表示一个图的点数和边数,让你构造出一个图满足 1- n 的最短路是素数,并且最小生成树也是素数。
析:首先 1 - n 的最短路,非常好解决,直接 1 连 n 就好了,但是素数尽量选小的,选2,3,5,这样比较小的,然后再构造MST,可以给每个边都是 1,然后最后 n-2 连 n-1的时候,保证加起来是素数就好,然后剩下的边随便连,凑够边数就好,但是权值要尽量的大,但不要超过1e9,一开始没看到 1e9,写大了,1e8就够用了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 1e8; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 10; const int maxm = 3e5 + 10; const LL mod = 1e9 + 7LL; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } bool is_prime(int x){ int t = sqrt(x + 0.5); for(int i = 2; i <= t; ++i) if(x % i == 0) return false; return true; } int main(){ scanf("%d %d", &n, &m); if(n == 2){ printf("3 3\n1 2 3\n"); return 0; } int sp = 3, mstp = m + 2; for(int i = m + 2; !is_prime(i); mstp = ++i); printf("%d %d\n", sp, mstp); printf("%d %d %d\n", 1, n, 3); int det = mstp - n; m -= 2; for(int i = 1; i <= n-3; ++i, --m) printf("%d %d 1\n", i, i + 1); printf("%d %d %d\n", n-2, n-1, det); if(m) printf("%d %d %d\n", n-1, n, INF); --m; for(int i = 1; i <= n && m > 0; ++i) for(int j = i+2; j <= n && m > 0; ++j) if(i != 1 || j != n) printf("%d %d %d\n", i, j, INF), --m; return 0; }