2565: 最长双回文串
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2658 Solved: 1346
[Submit][Status][Discuss]
Description
顺序和逆序读起来完全一样的串叫做回文串。比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同)。
输入长度为n的串S,求S的最长双回文子串T,即可将T分为两部分X,Y,(|X|,|Y|≥1)且X和Y都是回文串。
输入长度为n的串S,求S的最长双回文子串T,即可将T分为两部分X,Y,(|X|,|Y|≥1)且X和Y都是回文串。
Input
一行由小写英文字母组成的字符串S。
Output
一行一个整数,表示最长双回文子串的长度。
Sample Input
baacaabbacabb
Sample Output
12
HINT
样例说明
从第二个字符开始的字符串aacaabbacabb可分为aacaa与bbacabb两部分,且两者都是回文串。
对于100%的数据,2≤|S|≤10^5
2015.4.25新加数据一组
Source
析:首先先用Manacher算法处理出来,然后再求以 i 为开头和结尾的的最长回文串长度lx[i],rx[i],然后再求lx[i] + rx[i] 最大值即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-4; const int maxn = 1e5 + 10; const int maxm = 2e5 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } char s[maxn]; char ma[maxn<<1]; int len[maxn<<1]; int lx[maxn<<1], rx[maxn<<1]; void manacher(int n){ int l = 0; ma[l++] = '$'; ma[l++] = '#'; for(int i = 0; i < n; ++i) ma[l++] = s[i], ma[l++] = '#'; ma[l] = 0; int mx = 0, id = 0; for(int i = 0; i < l; ++i){ len[i] = mx > i ? min(len[2*id-i], mx-i) : 1; while(ma[i+len[i]] == ma[i-len[i]]) ++len[i]; if(i + len[i] > mx){ mx = i + len[i]; id = i; } lx[i-len[i]+1] = max(lx[i-len[i]+1], len[i]-1); rx[i+len[i]-1] = max(rx[i+len[i]-1], len[i]-1); } for(int i = 1; i < l; ++i) lx[i] = max(lx[i], lx[i-1] - 1); for(int i = l-2; i >= 0; --i) rx[i] = max(rx[i], rx[i+1] - 1); } int main(){ scanf("%s", s); n = strlen(s); manacher(n); int ans = 0; for(int i = 0; i < (n<<1|1); ++i) ans = max(ans, lx[i] + rx[i]); printf("%d\n", ans); return 0; }