题意:随机字母组成一个串,有一个目标串,当这个由随机字母组成的串出现目标串就停止,求这个随机字母组成串的期望长度。
析:由于只要包含目标串就可以停止,所以可以先把这个串进行处理,也就是KMP,然后dp[i] 表示从 i 结点到完全匹配期望长度,所以很容易得到状态转移方程 dp[i] = ∑dp[j] / n + 1,然后用高斯消元即可,要注意,要用全整数的高斯消元。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) //#define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 150000 + 10; const int maxm = 3e5 + 10; const int mod = 10007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } char s[20]; int f[maxn]; LL A[20][20]; void getFail(int n){ f[0] = f[1] = 0; for(int i = 1; i < n; ++i){ int j = f[i]; while(j && s[i] != s[j]) j = f[j]; f[i+1] = s[i] == s[j] ? j+1 : 0; } } void Gauess(int n){ for(int i = 0; i < n; ++i){ int r = i; while(r < n && !A[r][i]) ++r; if(r != i) for(int j = 0; j <= n; ++j) swap(A[r][j], A[i][j]); for(int k = i+1; k < n; ++k) if(A[k][i]){ LL f = A[k][i]; for(int j = i; j <= n; ++j) A[k][j] = A[k][j] * A[i][i] - f * A[i][j]; } } for(int i = n-1; i >= 0; --i){ for(int j = i+1; j < n; ++j) A[i][n] -= A[j][n] * A[i][j]; A[i][n] /= A[i][i]; } } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %s", &n, s); m = strlen(s); getFail(m); ms(A, 0); for(int i = 0; i < m; ++i){ A[i][i] += n; A[i][m+1] += n; for(int k = 0; k < n; ++k){ int j = i; while(j && s[j] != 'A' + k) j = f[j]; if(s[j] == 'A' + k) ++j; --A[i][j]; } } A[m][m] = 1; Gauess(m + 1); printf("Case %d:\n", kase); printf("%lld\n", A[0][m+1]); if(kase != T) puts(""); } return 0; }