1059: [ZJOI2007]矩阵游戏
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5281 Solved: 2530
[Submit][Status][Discuss]
Description
小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏。矩阵游戏在一个N
*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的)。每次可以对该矩阵进行两种操作:行交换操作:选择
矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩阵的任意行列,交换这两列(即交换
对应格子的颜色)游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑
色。对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根本就是无解的!!于是小Q决定写一个程
序来判断这些关卡是否有解。
Input
第一行包含一个整数T,表示数据的组数。接下来包含T组数据,每组数据第一行为一个整数N,表示方阵的大
小;接下来N行为一个N*N的01矩阵(0表示白色,1表示黑色)。
Output
输出文件应包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。
Sample Input
2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0
Sample Output
No
Yes
【数据规模】
对于100%的数据,N ≤ 200
Yes
【数据规模】
对于100%的数据,N ≤ 200
HINT
Source
析:对于同行或者是同列的数,那么无论经过多少次变化,那么肯定也是同行同列,那么也就是求能不能找到 n 个不同不同列的1。也就是二分图的最大匹配。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 400 + 10; const int maxm = 3e5 + 10; const ULL mod = 3; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int to, next; }; Edge edges[maxn*maxn<<1]; int head[maxn], cnt; void addEdge(int u, int v){ edges[cnt].to = v; edges[cnt].next = head[u]; head[u] = cnt++; } int match[maxn]; bool vis[maxn]; bool dfs(int u){ vis[u] = 1; for(int i = head[u]; ~i; i = edges[i].next){ int v = edges[i].to, w = match[v]; if(w < 0 || !vis[w] && dfs(w)){ match[u] = v; match[v] = u; return true; } } return false; } int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); ms(head, -1); cnt = 0; for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j){ int x; scanf("%d", &x); if(x) addEdge(i, j+n), addEdge(j+n, i); } int ans = 0; ms(match, -1); for(int i = 0; i < n; ++i) if(match[i] < 0){ ms(vis, 0); if(dfs(i)) ++ans; } puts(ans == n ? "Yes" : "No"); } return 0; }