1013: [JSOI2008]球形空间产生器sphere
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 6139 Solved: 3190
[Submit][Status][Discuss]
Description
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
Input
第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。
Output
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
Sample Input
2
0.0 0.0
-1.0 1.0
1.0 0.0
0.0 0.0
-1.0 1.0
1.0 0.0
Sample Output
0.500 1.500
HINT
提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B
的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 +
… + (an-bn)^2 )
析:首先第一个是定点,我们可以知道球上的点到圆心的距离都相等,所以可以列出 n 个等式,然后解出每个变量就好,也就是高斯消元。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-6; const int maxn = 20 + 10; const int maxm = 3e5 + 10; const int mod = 100003; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } double a[maxn][maxn]; void Gauess(int n){ for(int i = 0; i < n; ++i){ int r = i; for(int j = i+1; j < n; ++j) if(fabs(a[j][i]) > fabs(a[r][i])) r = j; if(r != i) for(int j = 0; j <= n; ++j) swap(a[r][j], a[i][j]); for(int k = i+1; k < n; ++k){ double f = a[k][i] / a[i][i]; for(int j = i; j <= n; ++j) a[k][j] -= f * a[i][j]; } } for(int i = n-1; i >= 0; --i){ for(int j = i+1; j < n; ++j) a[i][n] -= a[j][n] * a[i][j]; a[i][n] /= a[i][i]; } } double X[maxn]; int main(){ scanf("%d", &n); for(int i = 0; i < n; ++i) scanf("%lf", X + i); for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j){ double x; scanf("%lf", &x); a[i][j] = 2. * (X[j] - x); a[i][n] += sqr(X[j]) - sqr(x); } Gauess(n); for(int i = 0; i < n; ++i) printf("%.3f%c", a[i][n], i == n-1 ? '\n' : ' '); return 0; }