3110: [Zjoi2013]K大数查询
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9489 Solved: 2805
[Submit][Status][Discuss]
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
1
2
1
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1
的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是
1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3
大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
Source
析:第一维用权值线段树,也就是来维护每个值,由于是有负数,所以,要多一开倍,询问的是第 k 大,可以把每个值c,都变成 n - c + 1,这样查询的时候就是第 k 小了,然后第二维用区间线段树,维护一个区间,用快速给一些区间加1操作,这样,就可以直接来查询某个区间的第 k 小了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-3; const int maxn = 1e5 + 10; const int maxm = (100000 << 8) + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int root[maxn<<2], tot, lc[maxm], rc[maxm]; unsigned int sum[maxm], addv[maxm]; void push_up(int rt){ sum[rt] = sum[lc[rt]] + sum[rc[rt]]; } void push_down(int rt, int len){ if(!lc[rt]) lc[rt] = ++tot; // note if(!rc[rt]) rc[rt] = ++tot; // note sum[lc[rt]] += (LL)(len - (len>>1)) * addv[rt]; sum[rc[rt]] += (LL)(len >> 1) * addv[rt]; addv[lc[rt]] += addv[rt]; addv[rc[rt]] += addv[rt]; addv[rt] = 0; } void update(int L, int R, int l, int r, int &rt){ if(!rt) rt = ++tot; if(L <= l && r <= R){ sum[rt] += r - l + 1; ++addv[rt]; return ; } if(addv[rt]) pd(rt, r - l + 1); int m = l + r >> 1; if(L <= m) update(L, R, l, m, lc[rt]); if(R > m) update(L, R, m+1, r, rc[rt]); pu(rt); } void update(int L, int R, int k){ int l = 1, r = n<<1, rt = 1; while(l < r){ int m = l + r >> 1; update(L, R, 1, n, root[rt]); if(k <= m) rt <<= 1, r = m; else rt = rt<<1|1, l = m + 1; } update(L, R, 1, n, root[rt]); } unsigned int query(int L, int R, int l, int r, int rt){ if(L <= l && r <= R) return sum[rt]; if(addv[rt]) pd(rt, r - l + 1); int m = l + r >> 1; unsigned int ans = 0; if(L <= m) ans = query(L, R, l, m, lc[rt]); if(R > m) ans += query(L, R, m+1, r, rc[rt]); return ans; } int query(int L, int R, int k){ int l = 1, r = n<<1, rt = 1; unsigned int tmp; while(l < r){ int m = l + r >> 1; if((tmp = query(L, R, 1, n, root[rt<<1])) >= k) rt <<= 1, r = m; else rt = rt<<1|1, l = m + 1, k -= tmp; } return l; } int main(){ scanf("%d %d", &n, &m); int op, l, r, k; while(m--){ scanf("%d %d %d %d", &op, &l, &r, &k); if(op == 1) update(l, r, n - k + 1); else printf("%d\n", n - query(l, r, k) + 1); } return 0; }
整体二分,跑的真是快:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-3; const int maxn = 1e5 + 40; const int maxm = (100000 << 8) + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn], b[maxn], s[maxn]; void add(int x, int c){ for(int i = x; i <= (n<<1); i += i&-i) a[i] += c, b[i] += c * (x-1); } LL query(int x){ int t0 = 0; LL t1 = 0; for(int i = x; i; i -= -i&i) t0 += a[i], t1 += b[i]; return 1LL * x * t0 - t1; } struct Query{ int ty, l, r, id, k; }; Query q[maxn], q1[maxn], q2[maxn]; int ans[maxn]; void dfs(int fro, int rear, int l, int r){ if(l > r || fro > rear) return ; if(l == r){ for(int i = fro; i <= rear; ++i) if(q[i].id != -1) ans[q[i].id] = n - l + 1; return ; } int m = l + r >> 1; int lx = 0, rx = 0; for(int i = fro; i <= rear; ++i){ if(q[i].ty == 1){ if(q[i].k <= m){ add(q[i].l, 1); add(q[i].r+1, -1); q1[lx++] = q[i]; } else q2[rx++] = q[i]; } else{ LL t = query(q[i].r) - query(q[i].l-1); if(t >= q[i].k) q1[lx++] = q[i]; else q[i].k -= t, q2[rx++] = q[i]; } } for(int i = fro; i <= rear; ++i) if(q[i].ty == 1 && q[i].k <= m){ add(q[i].l, -1); add(q[i].r+1, 1); } for(int i = fro, j = 0; j < lx; ++j, ++i) q[i] = q1[j]; for(int i = lx+fro, j = 0; j < rx; ++j, ++i) q[i] = q2[j]; dfs(fro, fro + lx - 1, l, m); dfs(fro + lx, rear, m+1, r); } int main(){ scanf("%d %d", &n, &m); int idx = 0; for(int i = 0; i < m; ++i){ scanf("%d %d %d %d", &q[i].ty, &q[i].l, &q[i].r, &q[i].k); if(q[i].ty == 1){ q[i].k = n - q[i].k + 1; q[i].id = -1; } else q[i].id = idx++; } dfs(0, m-1, 0, (n<<1)+2); for(int i = 0; i < idx; ++i) printf("%d\n", ans[i]); return 0; }