题意:雪雪是一只猴子。它在每天的 2:00 —— 9:00之间非常渴,所以在这个期间它必须喝掉2个单位的水。它可以多次喝水,只要它喝水的总量是2.它从不多喝,在一小时内他只能喝一个单位的水。所以它喝水的时间段可能是2:00 ——4:00,或者3:00——5:00,或者7:00——9:00.甚至喝两次,第一次2:00——3:00,第二次8:00——9:00.但是它不能在1:00——3:00喝水,因为在1:00时它不渴,也不能在8:00——10:00喝水,因为9:00必须结束。一共有n(n <= 100)只这样的猴子。我们用一个(v,a,b)(0 <= v,a,b <= 50000,a < b,v <= b - a)来描述一个在时间a~b之间口渴,并且必须在这个期间喝够v个单位水的猴子。所有猴子喝水的速度都是1小时喝1个单位的水。现在的问题是只有一个地方可以让m只猴子同时喝水,需要作出一个能满足所有猴子的喝水需要的安排,问能否给出安排。多解时输出任意一组解即可。
析:很明显的把每只猴子都看作一个结点,然后把每个时间也是看成一个结点,但是,,,太多了吧,肯定会爆炸的,所以,先把所有的区间进行离散化,然后对每个区间建立结点,在输出解的时候,要注意,把所有的区间进行合并,只要对每个区间都加一个标志,循环标记,每次都加一个段,因为最大流最大的情况就是把整个区间都充满,不会超过。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-3; const int maxn = 500 + 10; const int maxm = 1e7 + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int from, to, cap, flow; }; struct Dinic{ int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; int d[maxn]; bool vis[maxn]; int cur[maxn]; void init(int n){ this-> n = n; for(int i = 0; i < n; ++i) G[i].cl; edges.cl; } void addEdge(int from, int to, int cap){ edges.pb((Edge){from, to, cap, 0}); edges.pb((Edge){to, from, 0, 0}); m = edges.sz; G[from].pb(m - 2); G[to].pb(m - 1); } bool bfs(){ ms(vis, 0); vis[s] = 1; d[s] = 0; queue<int> q; q.push(s); while(!q.empty()){ int u = q.front(); q.pop(); for(int i = 0; i < G[u].sz; ++i){ Edge &e = edges[G[u][i]]; if(!vis[e.to] && e.cap > e.flow){ vis[e.to] = 1; d[e.to] = d[u] + 1; q.push(e.to); } } } return vis[t]; } int dfs(int u, int a){ if(u == t || a == 0) return a; int flow = 0, f; for(int &i = cur[u]; i < G[u].sz; ++i){ Edge &e = edges[G[u][i]]; if(d[e.to] == d[u] + 1 && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0){ e.flow += f; edges[G[u][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int maxflow(int s, int t){ this-> s = s; this-> t = t; int flow = 0; while(bfs()){ ms(cur, 0); flow += dfs(s, INF); } return flow; } }; Dinic dinic; vector<int> val; int v[maxn], a[maxn], b[maxn]; int cnt[maxn]; int getpos(int x){ return lower_bound(val.begin(), val.end(), x) - val.begin(); } int main(){ int kase = 0; while(scanf("%d", &n) == 1 && n){ scanf("%d", &m); val.cl; val.pb(-1); int sum = 0; for(int i = 1; i <= n; ++i){ scanf("%d %d %d", v+i, a+i, b+i); val.pb(a[i]); val.pb(b[i]); sum += v[i]; } sort(val.begin(), val.end()); val.resize(unique(val.begin(), val.end()) - val.begin()); int len = val.sz; int s = 0, t = len + n + 3; dinic.init(t + 5); for(int i = 1; i <= n; ++i){ dinic.addEdge(s, len+i, v[i]); int l = getpos(a[i]); int r = getpos(b[i]); for(int j = l; j < r; ++j) dinic.addEdge(len+i, j, val[j+1]-val[j]); } for(int j = 1; j + 1 < len; ++j) dinic.addEdge(j, t, (val[j+1]-val[j])*m); if(sum != dinic.maxflow(s, t)) printf("Case %d: No\n", ++kase); else{ printf("Case %d: Yes\n", ++kase); for(int i = 0; i < len; ++i) cnt[i] = val[i]; for(int i = 1; i <= n; ++i){ vector<P> ans; for(int j = 0; j < dinic.G[i+len].sz && v[i]; ++j){ Edge &e = dinic.edges[dinic.G[i+len][j]]; if(e.from != i + len) continue; int x = dinic.edges[dinic.G[i+len][j]^1].flow; if(x >= 0) continue; x = -x; v[i] -= x; if(val[e.to] + x < val[e.to+1]){ if(x + cnt[e.to] <= val[e.to+1]){ ans.push_back(P(cnt[e.to], cnt[e.to] + x)); cnt[e.to] += x; if(cnt[e.to] == val[e.to+1]) cnt[e.to] = val[e.to]; } else{ x -= val[e.to+1] - cnt[e.to]; ans.push_back(P(cnt[e.to], val[e.to+1])); cnt[e.to] = val[e.to] + x; ans.push_back(P(val[e.to], cnt[e.to])); } } else ans.push_back(P(val[e.to], val[e.to+1])); } sort(ans.begin(), ans.end()); for(int j = 0; j + 1 < ans.sz; ){ if(ans[j].se == ans[j+1].fi) ans[j].se = ans[j+1].se, ans.erase(ans.begin()+j+1); else ++j; } printf("%d", ans.sz); for(int j = 0; j < ans.sz; ++j) printf(" (%d,%d)", ans[j].fi, ans[j].se); printf("\n"); } } } return 0; }