题意:有A个村庄,B个城市,m条边,从起点到终点,找一条最短路径。但是,有一种工具可以使人不费力的移动L个长度,但始末点必须是城市或村庄。这种工具有k个,每个只能使用一次,并且在城市内部不可使用,但在村庄内部可使用。另外,在城市或村庄内部的时间不计。
析:先预处理出来使用工具能到达的距离,这个可以用Floyd 来解决,然后f[i][u] 表示到达 u 还剩下 i 次工具未用,然后用bfs就可以很简单的解决。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 10; const int maxm = 1e5 + 10; const int mod = 50007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn]; int f[12][maxn]; int main(){ int T; cin >> T; while(T--){ int A, B, L, K; scanf("%d %d %d %d %d", &A, &B, &m, &L, &K); ms(dp, INF); while(m--){ int u, v, c; scanf("%d %d %d", &u, &v, &c); dp[u][v] = dp[v][u] = min(c, dp[u][v]); } FOR(k, 1, A+1) FOR(i, 1, A+B+1) FOR(j, 1, A+B+1) dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]); ms(f, INF); f[K][A+B] = 0; queue<P> q; q.push(P(K, A+B)); while(!q.empty()){ P p = q.front(); q.pop(); int u = p.se, i = p.fi; for(int v = 1; v < A+B; ++v){ if(dp[u][v] == INF || u == v) continue; if(f[i][v] > f[i][u] + dp[u][v]){ f[i][v] = f[i][u] + dp[u][v]; q.push(P(i, v)); } if(i && f[i-1][v] > f[i][u] && L >= dp[u][v]){ f[i-1][v] = f[i][u]; q.push(P(i-1, v)); } } } int ans = INF; for(int i = 0; i <= K; ++i) ans = min(ans, f[i][1]); printf("%d\n", ans); } return 0; }