题意:一排带有颜色的砖块,每一个可以消除相同颜色的砖块,,每一次可以到块数k的平方分数。求最大分数是多少。
析:dp[i][j][k] 表示消除 i ~ j,并且右边再拼上 k 个 颜色等于a[j] 的方块所以得到的新序列的最大得分,也就是说那 k 个是来自右边,我们已经消除了它们之间的其他方块才得到的。
这样的话有两种决策:
第一种,直接消除最右边的段,也就是转移到 dp[i][p-1] + (j-p+k+1)^2,其中 p 表示从 j 最远可延伸到 p,使得其中的a[x] == a[j]。
第二种,枚举和左边哪一段拼接起来,也就是找 q < p && a[q] == a[r] && a[q+1] != a[q],这样的话就转移到 dp[q+1][p-1][0] + dp[i][q][j-p+k+1]。
记忆化搜索即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 200 + 10; const int maxm = 1e6 + 10; const int mod = 100007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int dp[maxn][maxn][maxn]; int LEFT[maxn]; int dfs(int l, int r, int k){ int &ans = dp[l][r][k]; if(ans >= 0) return ans; if(r < l) return ans = 0; if(LEFT[r] == l) return ans = sqr(r - l + k + 1); ans = dfs(l, LEFT[r]-1, 0) + sqr(r - LEFT[r] + 1 + k); for(int i = LEFT[r]-2; i >= l; --i){ // take care of the lower_bound if(a[i] == a[r]){ ans = max(ans, dfs(l, i, r - LEFT[r] + 1 + k) + dfs(i+1, LEFT[r]-1, 0)); i = LEFT[i] - 1; } } return ans; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); for(int i = 1; i <= n; ++i){ scanf("%d", a+i); int j = i; while(a[j-1] == a[i]) --j; LEFT[i] = j; } ms(dp, -1); dp[0][0][0] = 0; printf("Case %d: %d\n", kase, dfs(1, n, 0)); } return 0; }