4326: NOIP2015 运输计划
Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1930 Solved: 1231
[Submit][Status][Discuss]
Description
公元 2044 年,人类进入了宇宙纪元。L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间,
这 n?1 条航道连通了 L 国的所有星球。小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如
:有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道是需要时间
的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之间不会产生任何干扰。为了鼓励科技
创新, L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小P 把某一条航道改造成虫洞,飞船驶过虫
洞不消耗时间。在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后,这 m 个运输
计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的物流公司的阶段性工作就完成了。如
果小 P 可以自由选择将哪一条航道改造成虫洞, 试求出小 P 的物流公司完成阶段性工作所需要的最短时间是多
少?
Input
第一行包括两个正整数 n,m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。
接下来 n-1 行描述航道的建设情况,其中第 i 行包含三个整数 ai,bi 和 ti,
表示第 i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。
接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j 个运输计划是从 uj 号星球飞往 vj号星球。
数据保证 1≤ui,vi≤n ,n,m<=300000
数据保证 1≤ai,bi≤n 且 0≤ti≤1000。
Output
输出文件只包含一个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。
Sample Input
6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5
Sample Output
11
将第 1 条航道改造成虫洞: 则三个计划耗时分别为:11,12,11,故需要花费的时间为 12。
将第 2 条航道改造成虫洞: 则三个计划耗时分别为:7,15,11,故需要花费的时间为 15。
将第 3 条航道改造成虫洞: 则三个计划耗时分别为:4,8,11,故需要花费的时间为 11。
将第 4 条航道改造成虫洞: 则三个计划耗时分别为:11,15,5,故需要花费的时间为 15。
将第 5 条航道改造成虫洞: 则三个计划耗时分别为:11,10,6,故需要花费的时间为 11。
故将第 3 条或第 5 条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为 11。
将第 1 条航道改造成虫洞: 则三个计划耗时分别为:11,12,11,故需要花费的时间为 12。
将第 2 条航道改造成虫洞: 则三个计划耗时分别为:7,15,11,故需要花费的时间为 15。
将第 3 条航道改造成虫洞: 则三个计划耗时分别为:4,8,11,故需要花费的时间为 11。
将第 4 条航道改造成虫洞: 则三个计划耗时分别为:11,15,5,故需要花费的时间为 15。
将第 5 条航道改造成虫洞: 则三个计划耗时分别为:11,10,6,故需要花费的时间为 11。
故将第 3 条或第 5 条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为 11。
HINT
Source
析:
点差分:假设u到v,o=lca(u, v),f为o的父节点:
dif[u] += x; dif[v] += x; dif[o] -= x; dif[f] -= x;
边差分:假设u到v,o=lca(u, v):
dif[u] += x; dif[v] += x; dif[o] -= 2* x;
首先二分是很容易想出来的,然后主要是判断这个解合不合法,先二分答案 mid,因为有 m 个计划,所以只要添加虫洞的肯定是所有的时间长于 mid 的计划 中,也就是是那些的共同边,这个就可以用树上差分来做了,假设 s 到 t,那么让in[s]++,in[t]++,in[lca(s, t)] -= 2,其中in 表示的是 该结点与其父结点的边的计数,最后再跑一次dfs,把所有的权值都累加上去,这样就能知道哪些是共同的边了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 3e5 + 20; const int maxm = 100 + 10; const ULL mod = 10007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int to, val, next; }; Edge edge[maxn<<1]; int head[maxn], cnt; inline void addEdge(int u, int v, int val){ edge[cnt].to = v; edge[cnt].val = val; edge[cnt].next = head[u]; head[u] = cnt++; } int p[21][maxn]; int dep[maxn], dp[maxn], dist[maxn]; struct Road{ int u, v, lca, dist; }; Road road[maxn]; inline void dfs(int u, int fa, int d){ p[0][u] = fa; dep[u] = d; for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; dp[v] = dp[u] + edge[i].val; dist[v] = edge[i].val; dfs(v, u, d + 1); } } void init(){ ms(p, -1); dfs(1, -1, 0); for(int k = 0; k < 20; ++k) for(int u = 1; u <= n; ++u) if(p[k][u] > 0) p[k+1][u] = p[k][p[k][u]]; } inline int LCA(int u, int v){ if(dep[u] > dep[v]) swap(u, v); for(int k = 0; k < 20; ++k) if(dep[v] - dep[u] >> k & 1) v = p[k][v]; if(u == v) return u; for(int k = 19; k >= 0; --k) if(p[k][u] != p[k][v]){ u = p[k][u]; v = p[k][v]; } return p[0][u]; } int in[maxn]; inline void dfs1(int u, int fa){ for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; dfs1(v, u); in[u] += in[v]; } } inline bool judge(int mid){ int ans = 0, cnt = 0; for(int i = 1; i <= n; ++i) in[i] = 0; for(int i = 0; i < m; ++i) if(road[i].dist > mid){ ans = max(ans, road[i].dist - mid); ++cnt; ++in[road[i].u]; ++in[road[i].v]; in[road[i].lca] -= 2; } if(cnt == 0) return true; dfs1(1, -1); for(int i = 1; i <= n; ++i) if(in[i] == cnt && dist[i] >= ans) return true; return false; } int main(){ scanf("%d %d", &n, &m); ms(head, -1); cnt = 0; for(int i = 1; i < n; ++i){ int u, v, c; scanf("%d %d %d", &u, &v, &c); addEdge(u, v, c); addEdge(v, u, c); } init(); int l = 0, r = 0; for(int i = 0; i < m; ++i){ scanf("%d %d", &road[i].u, &road[i].v); road[i].lca = LCA(road[i].u, road[i].v); road[i].dist = dp[road[i].u] + dp[road[i].v] - (dp[road[i].lca]<<1); r = max(r, road[i].dist); } while(l <= r){ int m = l + r >> 1; if(judge(m)) r = m - 1; else l = m + 1; } printf("%d\n", l); return 0; }