方格取数(2)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6806 Accepted Submission(s): 2175
Problem Description
给你一个m*n的格子的棋盘,每个格子里面有一个非负数。
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大。
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大。
Input
包括多个测试实例,每个测试实例包括2整数m,n和m*n个非负数(m<=50,n<=50)
Output
对于每个测试实例,输出可能取得的最大的和
Sample Input
3 3
75 15 21
75 15 28
34 70 5
Sample Output
188
Author
ailyanlu
Source
Recommend
8600
析:很明显的是二分图的最大独立集,但是每个点都有权值,这个可以用最小割来求,建立一个超级源点s,和汇点t,然后s 向 X集,添加容量为权值的边,Y集向 t 添加容量为权值的,然后跑一遍最小割,然后用总权值减去就是答案了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 50 * 50 + 20; const int maxm = 100 + 10; const ULL mod = 10007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int from, to, cap, flow; }; struct Dinic{ int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; bool vis[maxn]; int d[maxn]; int cur[maxn]; void init(int n){ this-> n = n; for(int i = 0; i < n; ++i) G[i].cl; edges.cl; } void addEdge(int from, int to, int cap){ edges.pb((Edge){from, to, cap, 0}); edges.pb((Edge){to, from, 0, 0}); m = edges.sz; G[from].pb(m-2); G[to].pb(m-1); } bool bfs(){ queue<int> q; ms(vis, 0); d[s] = 0; q.push(s); vis[s] = 1; while(!q.empty()){ int x = q.front(); q.pop(); for(int i = 0; i < G[x].sz; ++i){ Edge &e = edges[G[x][i]]; if(!vis[e.to] && e.cap > e.flow){ vis[e.to] = 1; d[e.to] = d[x] + 1; q.push(e.to); } } } return vis[t]; } int dfs(int x, int a){ if(x == t || a == 0) return a; int flow = 0, f = 0; for(int &i = cur[x]; i < G[x].sz; ++i){ Edge &e = edges[G[x][i]]; if(d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0){ e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int maxflow(int s, int t){ this->s = s; this->t = t; int flow = 0; while(bfs()){ ms(cur, 0); flow += dfs(s, INF); } return flow; } }; Dinic dinic; int main(){ while(scanf("%d %d", &n, &m) == 2){ dinic.init(n * m + 10); int s = 0, t = n * m + 5; int sum = 0; FOR(i, 0, n) for(int j = 1; j <= m; ++j){ int x; scanf("%d", &x); sum += x; int now = i * m + j; if(i + j & 1){ dinic.addEdge(s, now, x); if(i) dinic.addEdge(now, now - m, INF); // up if(j > 1) dinic.addEdge(now, now - 1, INF); // left if(i + 1 < n) dinic.addEdge(now, now + m, INF); // down if(j < m) dinic.addEdge(now, now + 1, INF); // right } else dinic.addEdge(now, t, x); } printf("%d\n", sum - dinic.maxflow(s, t)); } return 0; }