题意:一个n*n的房子,有很多灯,每个格子只能被上下方向照一次、左右方向照一次,每个灯可以选择上下或是左右照,照明长度以自身位置为中心,占用2*r+1个格子。问能否安排一种方案,使所有格子满足条件。
析:典型的Two-Sat,对于行来说,如果两个能够交叉,那么他们不能都是左右,对于列也是一样。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e4 + 50; const LL mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct TwoSat{ int n; vector<int> G[maxn<<1]; bool mark[maxn<<1]; int S[maxn<<1], c; bool dfs(int x){ if(mark[x^1]) return false; if(mark[x]) return true; mark[x] = true; S[c++] = x; for(int i = 0; i < G[x].sz; ++i) if(!dfs(G[x][i])) return false; return true; } void add_clause(int x, int xval, int y, int yval){ x = x * 2 + xval; y = y * 2 + yval; G[x^1].pb(y); G[y^1].pb(x); } bool solve(){ for(int i = 0; i < n*2; i += 2){ if(!mark[i] && !mark[i+1]){ c = 0; if(!dfs(i)){ while(c > 0) mark[S[--c]] = false; if(!dfs(i+1)) return false; } } } return true; } }; map<P, int> mp; vector<int> row[1005], col[1005]; TwoSat twosat; int main(){ int r, l; scanf("%d %d %d", &n, &r, &l); int cnt = 0; for(int i = 0; i < l; ++i){ int x, y; scanf("%d %d", &x, &y); --x; --y; mp[P(x, y)] = cnt++; row[x].pb(y); col[y].pb(x); } for(int i = 0; i < n; ++i){ sort(row[i].begin(), row[i].end()); sort(col[i].begin(), col[i].end()); } twosat.n = cnt; for(int i = 0; i < n; ++i){ for(int j = 0; j < row[i].sz; ++j){ int k = j + 1; while(k < row[i].sz && row[i][j] + r >= row[i][k] - r){ twosat.add_clause(mp[P(i, row[i][j])], 0, mp[P(i, row[i][k])], 0); ++k; } } for(int j = 0; j < col[i].sz; ++j){ int k = j + 1; while(k < col[i].sz && col[i][j] + r >= col[i][k] - r){ twosat.add_clause(mp[P(col[i][j], i)], 1, mp[P(col[i][k], i)], 1); ++k; } } } puts(twosat.solve() ? "YES" : "NO"); return 0; }