题意:给定一棵树,要建立一些消防站,并且每个结点到最近一个的消防站的距离不能超过limit i,在每个结点建立消防站要花一定的费用cost i,求最少的花费是多少。
析:想了很久,确实是没想出来怎么做,dp[i][j] 表示 i 结点依赖 j 结点的最小花费,然后ans[i] 表示 以 i 为根结点的树,最少花费。在转移时,就是直接枚举 i 结点,所以依赖的 j 结点,然后ans 是取最小值,dp[i][j] += min{ dp[k][j] - cost[j], ans[k] }。其中 k 是 i 的子结点,因为 i 结点依赖 j ,其子树也是可以 j 结点的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1000 + 50; const int mod = 1000; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } struct Edge{ int to, next, val; }; Edge edge[maxn<<1]; int head[maxn], cnt; int cost[maxn], limit[maxn]; void addEdge(int u, int v, int c){ edge[cnt].to = v; edge[cnt].val = c; edge[cnt].next = head[u]; head[u] = cnt++; } int dist[maxn][maxn]; int ans[maxn], dp[maxn][maxn]; void dfs_for_dist(int u, int fa, int sp){ for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; dist[sp][v] = dist[v][sp] = dist[sp][u] + edge[i].val; dfs_for_dist(v, u, sp); } } void dfs(int u, int fa){ for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; dfs(v, u); } for(int j = 1; j <= n; ++j){ if(dist[u][j] > limit[u]) continue; dp[u][j] = cost[j]; for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; dp[u][j] += min(ans[v], dp[v][j] - cost[j]); } ans[u] = min(ans[u], dp[u][j]); } } int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); for(int i = 1; i <= n; ++i) scanf("%d", cost+i); for(int i = 1; i <= n; ++i) scanf("%d", limit+i); ms(head, -1); cnt = 0; for(int i = 1; i < n; ++i){ int u, v, c; scanf("%d %d %d", &u, &v, &c); addEdge(u, v, c); addEdge(v, u, c); } for(int i = 1; i <= n; ++i) dfs_for_dist(i, -1, i); ms(ans, INF); ms(dp, INF); dfs(1, -1); printf("%d\n", ans[1]); } return 0; }