题意:有 n 架飞机,每个飞机早着陆,或者晚着陆,让你安排一个方式,让他们着陆的时间间隔尽量大。
析:首先对于时间间隔,可以用二分来解决,然后就成了一个判定性问题,然后怎么判断该时间间隔是不是成立呢,那么用2-Sat能解决,每次对于时间间隔都小于正在判定的,然后给他们连上相应的边,是连两条,然后跑一遍2-sat 就OK了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e15; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 2000 + 10; const int mod = 3; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } // UVaLive 3211 int ta[maxn], tb[maxn]; struct TwoSAT{ int n; vector<int> G[maxn<<1]; bool mark[maxn<<1]; int S[maxn<<1], c; bool dfs(int x){ if(mark[x^1]) return false; if(mark[x]) return true; mark[x] = 1; S[c++] = x; for(int i = 0; i < G[x].sz; ++i) if(!dfs(G[x][i])) return false; return true; } void init(int n){ this->n = n; for(int i = 0; i < n*2; ++i) G[i].cl; ms(mark, 0); } void add_clause(int x, int xval, int y, int yval){ x = x * 2 + xval; y = y * 2 + yval; G[x^1].pb(y); G[y^1].pb(x); } bool solve(){ for(int i = 0; i < 2*n; i += 2){ if(!mark[i] && !mark[i+1]){ c = 0; if(!dfs(i)){ while(c > 0) mark[S[--c]] = 0; if(!dfs(i+1)) return false; } } } return true; } }; TwoSAT twosat; bool judge(int m){ twosat.init(n); for(int i = 0; i < n; ++i) for(int j = i+1; j < n; ++j){ if(abs(ta[i] - ta[j]) <= m) twosat.add_clause(i, 0, j, 0); if(abs(ta[i] - tb[j]) <= m) twosat.add_clause(i, 0, j, 1); if(abs(tb[i] - ta[j]) <= m) twosat.add_clause(i, 1, j, 0); if(abs(tb[i] - tb[j]) <= m) twosat.add_clause(i, 1, j, 1); } return twosat.solve(); } int main(){ while(scanf("%d", &n) == 1){ int l = 0, r = 0; for(int i = 0; i < n; ++i){ scanf("%d %d", ta+i, tb+i); r = max(r, tb[i]); } while(l <= r){ int m = l + r >> 1; if(judge(m)) l = m + 1; else r = m - 1; } printf("%d\n", l); } return 0; }