题意:给定 n 个盒子,然后告诉你每个盒子在哪个盒子里,数值越大,盒子越大,给定你初态,和末态,问你最少要几步能完成,只有两种操作,一种是把一个盒子连同里面的小盒子放到一个空盒子里,另一种是把一个堆盒子里的最外面的那个盒子拿出来。
析:首先,先遍历一次,如果初态和不一样,那么初态后面的要全部拿出来,然后再遍历一次,然后如果发现不一样,然后要看把末态的父结点是不是孤立的,如果不是,也要全部拿出。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) //#define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e15; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 100; const int mod = 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int fa[maxn]; int pa[maxn]; int ans; void dfs(int x){ if(pa[x] == 0) return ; dfs(pa[x]); pa[x] = 0; ++ans; } int main(){ while(scanf("%d", &n) == 1){ for(int i = 1; i <= n; ++i) scanf("%d", pa+i); for(int i = 1; i <= n; ++i) scanf("%d", fa+i); ans = 0; for(int i = 1; i <= n; ++i) // remove if(pa[i] != fa[i]) dfs(i); for(int i = 1; i <= n; ++i){ // unit if(pa[i] == fa[i]) continue; ++ans; dfs(fa[i]); } printf("%d\n", ans); } return 0; }