题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u。
析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩成一个点,然后该图就成了一个DAG,然后就可以直接用DP来做了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e15; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1000 + 50; const LL mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } vector<int> G[maxn]; int pre[maxn], lowlink[maxn], sccno[maxn]; int dfs_cnt, scc_cnt; stack<int> S; void dfs(int u){ pre[u] = lowlink[u] = ++dfs_cnt; S.push(u); for(int i = 0; i < G[u].sz; ++i){ int v = G[u][i]; if(!pre[v]){ dfs(v); lowlink[u] = min(lowlink[u], lowlink[v]); } else if(!sccno[v]) lowlink[u] = min(lowlink[u], pre[v]); } if(lowlink[u] == pre[u]){ ++scc_cnt; while(1){ int x = S.top(); S.pop(); sccno[x] = scc_cnt; if(x == u) break; } } } void find_scc(int n){ dfs_cnt = scc_cnt = 0; ms(pre, 0); ms(sccno, 0); for(int i = 1; i <= n; ++i) if(!pre[i]) dfs(i); } vector<int> g[maxn]; int num[maxn]; int dp[maxn]; int ans; bool vis[maxn]; void dfs1(int u){ dp[u] = 0; for(int i = 0; i < g[u].sz; ++i){ int v = g[u][i]; dfs1(v); dp[u] = max(dp[u], dp[v]); } dp[u] += num[u]; ans = max(ans, dp[u]); } int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); for(int i = 1; i <= n; ++i) G[i].cl, g[i].cl; for(int i = 0; i < m; ++i){ int u, v; scanf("%d %d", &u, &v); G[u].pb(v); } find_scc(n); ms(num, 0); ms(vis, 0); for(int i = 1; i <= n; ++i) ++num[sccno[i]]; for(int i = 1; i <= n; ++i) for(int j = 0; j < G[i].sz; ++j){ int v = G[i][j]; if(sccno[i] != sccno[v]){ g[sccno[i]].pb(sccno[v]); vis[sccno[v]] = 1; } } ans = 0; for(int i = 1; i <= scc_cnt; ++i) if(!vis[i]) dfs1(i); printf("%d\n", ans); } return 0; }