题意:你生活在一个魔法大陆上,你有n 魔力, 这个大陆上有m 种魔法水晶,还有n 种合成水晶的方式,每种水晶价格告诉你,并且告诉你哪些水晶你能直接造出来,哪些你必须合成才能造出来,问你n魔力最多能卖多少钱的水晶?
析:首先知道的是,如果每个所消耗的魔法水晶固定,那么这就是一个背包问题,很简单就能搞定,然而并不是,但是我们能够推出,经过一定次数的变换,这个值肯定就是固定的了而且是最小的,这个就可以用spfa进行松弛操作。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e15; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 200 + 50; const LL mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int val[maxn], w[maxn]; int num[maxn]; int dp[maxn*50]; vector<P> v[maxn]; void solve(int u){ int sum = 0; for(int i = 0; i < v[u].sz; ++i) sum += w[v[u][i].fi] * v[u][i].se; if(sum < w[num[u]]) w[num[u]] = sum; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ int k; scanf("%d %d %d", &m, &n, &k); for(int i = 1; i <= n; ++i){ int x; scanf("%d", &x); if(0 == x) scanf("%d", val + i), w[i] = m + 1; else scanf("%d %d", w+i, val+i); } for(int i = 1; i <= k; ++i){ v[i].cl; scanf("%d", num+i); int x; scanf("%d", &x); for(int j = 0; j < x; ++j){ int u, vv; scanf("%d %d", &u, &vv); v[i].pb(P(u, vv)); } } for(int i = 1; i <= 5; ++i){ for(int j = 1; j <= k; ++j) solve(j); } ms(dp, 0); for(int i = 1; i <= n; ++i) for(int j = w[i]; j <= m; ++j) dp[j] = max(dp[j], dp[j-w[i]] + val[i]); printf("Case #%d: %d\n", kase, dp[m]); } return 0; }