题意:给定一个图,找出一个最小环。
析:暴力枚举每一条,然后把边设置为最大值,以后就不用改回来了,然后跑一遍最短路,跑 n 次就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down //#define mp make_pair #define cl clear() //#define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e15; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 8000 + 50; const LL mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int ans; struct Dijskstra{ struct Edge{ int from, to, dist; Edge() { } Edge(int f, int t, int v) : from(f), to(t), dist(v) { } }; vector<Edge> edges; vector<int> G[maxn]; bool done[maxn]; int d[maxn]; struct HeapNode{ int d, u; HeapNode(){ } HeapNode(int dd, int uu) : d(dd), u(uu) { } bool operator < (const HeapNode &p) const{ return d > p.d; } }; void init(int n){ for(int i = 0; i < n; ++i) G[i].cl; edges.cl; } void addEdge(int from, int to, int dist){ edges.pb(Edge(from, to, dist)); G[from].pb(edges.sz-1); } int dijkstra(int s, int t){ priority_queue<HeapNode> pq; ms(d, INF); d[s] = 0; ms(done, false); pq.push(HeapNode(0, s)); while(!pq.empty()){ HeapNode x = pq.top(); pq.pop(); int u = x.u; if(t == x.u) return d[t]; if(d[u] >= ans) return ans; if(done[u]) continue; done[u] = true; for(int i = 0; i < G[u].sz; ++i){ Edge &e = edges[G[u][i]]; if(d[e.to] > d[u] + e.dist){ d[e.to] = d[u] + e.dist; pq.push(HeapNode(d[e.to], e.to)); } } } return d[t]; } }; map<P, int> mp; int cnt; int ID(const P &p){ if(mp.count(p)) return mp[p]; return mp[p] = cnt++; } Dijskstra dij; int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); mp.cl; cnt = 0; dij.init(n*2+10); for(int i = 0; i < n; ++i){ int x1, y1, x2, y2, w; scanf("%d %d %d %d %d", &x1, &y1, &x2, &y2, &w); int u = ID(P(x1, y1)); int v = ID(P(x2, y2)); dij.addEdge(u, v, w); dij.addEdge(v, u, w); } ans = INF; for(int i = 0; i < dij.edges.sz; i += 2){ int val = dij.edges[i].dist; dij.edges[i].dist = dij.edges[i^1].dist = INF; ans = min(ans, dij.dijkstra(dij.edges[i].from, dij.edges[i].to) + val); } printf("Case #%d: %d\n", kase, ans == INF ? 0 : ans); } return 0; }