题意:给一棵节点数为n,节点种类为k的无根树,问其中有多少种不同的简单路径,可以满足路径上经过所有k种类型的点?
析:对于路径,就是两类,第一种情况,就是跨过根结点,第二种是不跨过根结点,分别讨论就好,由于结点比较大,所以采用分治来进行处理,优先选取重点作为划分的依据。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 50000 + 10; const LL mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } int all; struct Edge{ int to, next; }; Edge edge[maxn<<1]; int head[maxn], cnt; int val[maxn]; void addEdge(int u, int v){ edge[cnt].to = v; edge[cnt].next = head[u]; head[u] = cnt++; } int root, num, f[maxn]; LL dp[1<<10]; int sum[maxn]; bool vis[maxn]; LL ans; void dfs_for_root(int u, int fa){ sum[u] = 1; f[u] = 0; for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa || vis[v]) continue; dfs_for_root(v, u); sum[u] += sum[v]; f[u] = max(f[u], sum[v]); } f[u] = max(f[u], num - sum[u]); if(f[root] > f[u]) root = u; } void dfs_for_color(int u, int fa, int s){ for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa || vis[v]) continue; ++dp[s|1<<val[v]]; dfs_for_color(v, u, s|1<<val[v]); } } LL solve(int u, int s){ ms(dp, 0); ++dp[s]; dfs_for_color(u, -1, s); LL ans = 0; for(int i = 0; i <= all; ++i){ if(!dp[i]) continue; int tmp = 0; tmp += dp[all]; for(int j = i; j; j = (j-1)&i) tmp += dp[all^j]; ans += (LL)tmp * dp[i]; } return ans; } void dfs_for_ans(int u){ ans += solve(u, 1<<val[u]); vis[u] = true; for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(vis[v]) continue; ans -= solve(v, 1<<val[u]|1<<val[v]); root = 0; f[0] = num = sum[v]; dfs_for_root(v, u); dfs_for_ans(root); } } int main(){ while(scanf("%d %d", &n, &m) == 2){ for(int i = 1; i <= n; ++i){ scanf("%d", val+i); --val[i]; } all = (1<<m) - 1; ms(head, -1); cnt = 0; for(int i = 1; i < n; ++i){ int u, v; scanf("%d %d", &u, &v); addEdge(u, v); addEdge(v, u); } ms(vis, 0); root = 0; ans = 0LL; f[0] = num = n; dfs_for_root(1, -1); dfs_for_ans(root); printf("%I64d\n", ans); } return 0; }