题意:给定上 l,r,a, b,让你求从 l 到 r 这个区间内的在a进制到b进制如果是回文数就加上该进制的大小,如果不是,那么就加上1.
析:数位DP。
dp[i][j][k] 表示 i 进制下,前 j 位,回文串的长度是k有多少个,然后统计完后,再乘以进制即可,最后再加上那些不是回文。
但是好像跑的有点慢,3700ms多,不知道什么情况。。。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 63248 + 100; const int mod = 1e9; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } LL dp[40][40][40]; int num[40]; int a[40]; LL dfs(int x, int pos, int last, bool is, bool ok){ if(!pos) return 1; LL &ans = dp[x][pos][last]; if(!is && !ok && ans >= 0) return ans; LL res = 0; int n = ok ? a[pos] : x-1; for(int i = 0; i <= n; ++i){ if(is){ num[last] = i; res += dfs(x, pos-1, last-(i == 0), i == 0, i == n && ok); } else{ int m = (last+1) / 2; if(last&1){ if(pos >= m){ num[pos] = i; res += dfs(x, pos-1, last, is && i == 0, i == n && ok); } else if(i == num[2*m-pos]) res += dfs(x, pos-1, last, is && i == 0, ok && i == n); } else{ if(pos > m){ num[pos] = i; res += dfs(x, pos-1, last, is && i == 0, i == n && ok); } else if(i == num[last+1-pos]) res += dfs(x, pos-1, last, is && i == 0, i == n && ok); } } } if(!ok && !is) ans = res; return res; } LL solve(int n, int x, int y){ LL ans = 0; LL sum = 0; for(int i = x; i <= y; ++i){ int xx = n; int len = 0; while(xx){ a[++len] = xx % i; xx /= i; } LL tmp = dfs(i, len, len, 1, 1); sum += tmp; ans += tmp * i; } ans += (LL)(y-x+1) * n - sum; return ans; } inline bool scan(int &ret){ char c; if(c=getchar(),c==EOF) return 0; while(c<'0'&&c>'9')c=getchar(); ret=c-'0'; while(c=getchar(),c>='0'&&c<='9')ret=ret*10+(c-'0'); return true; } int main(){ ms(dp, -1); int T; scan(T); for(int kase = 1; kase <= T; ++kase){ int a, b, l, r; scan(l); scan(r); scan(a); scan(b); printf("Case #%d: %I64d\n", kase, solve(r, a, b) - solve(l-1, a, b)); } return 0; }