题意:给定给你一叠DV,编号1到n,1在最上面,n在最下面。然后现在给你m个操作,每次都指定一张CD,问要拿走这个CD需要挪走上面多少张CD,并且这个要拿走的CD放在这个叠CD的顶端。
析:这个题要倒着来做,我就是正着做的,太复杂了,因为每次操作后,都要再重新处理后面的数,时间复杂度太高。
如果是倒着做,每次只要更新后面的就好,不用管前面的数,因为前面的是不会影响到的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 300000 + 10; const int mod = 100000 + 50; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r > 0 && r <= n && c > 0 && c <= m; } int sum[maxn]; int lowbit(int x){ return -x&x; } void add(int x, int val){ while(x < maxn){ sum[x] += val; x += lowbit(x); } } int query(int x){ int ans = 0; while(x){ ans += sum[x]; x -= lowbit(x); } return ans; } int pos[maxn]; int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); memset(sum, 0, sizeof sum); for(int i = 1; i <= n; ++i){ pos[i] = n - i + 1; add(pos[i], 1); } int cnt = n; for(int i = 0; i < m; ++i){ if(i) putchar(' '); int x; scanf("%d", &x); printf("%d", n - query(pos[x])); add(pos[x], -1); pos[x] = ++cnt; add(pos[x], 1); } printf("\n"); } return 0; }