题意:中文题。
析:很著名的莫队算法,先把这个求概率的式子表达出来,应该是分子:C(x1, 2) + C(x2, 2) + C(x3, 2) + ... + C(xn, 2) 分母:C(n, 2),然后化成分数的表达形式,[x1(x1-1)+x2(x2-1)+...+xn(xn-1)] / (n*(n-1)) 然后再化简得到 (sigma(xi*xi) - n) / (n*(n-1)) ,然后就是对每个区间进行运算,离线,把所以的序列分成sqrt(n)块,然后用两个指针,进行对数据的计算。
注意不要用I64d,用的话WA到死。。。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <assert.h> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 0xffffffffffLL; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-6; const int maxn = 50000 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL ansx[maxn], ansy[maxn]; int pos[maxn], val[maxn]; int cnt[maxn]; struct Node{ int l, r, id; bool operator < (const Node &p) const{ return pos[l] < pos[p.l] || pos[l] == pos[p.l] && r < p.r; } }; Node a[maxn]; LL x, y; void update(int l, int ok){ x -= cnt[val[l]] * (LL)cnt[val[l]]; cnt[val[l]] += ok; x += cnt[val[l]] * (LL)cnt[val[l]] - ok; y += ok; } void update(int i){ ansx[i] = x; ansy[i] = y * (y - 1); } int main(){ scanf("%d %d", &n, &m); for(int i = 1; i <= n; ++i) scanf("%d", val+i); for(int i = 0; i < m; ++i){ scanf("%d %d", &a[i].l, &a[i].r); a[i].id = i; } int t = sqrt(n + 0.5); for(int i = 1; i <= n; ++i) pos[i] = i / t; sort(a, a + m); for(int l = 1, i = 0 ,r = 0; i < m; ++i){ int L = a[i].l, R = a[i].r; while(l < L) update(l++, -1); while(l > L) update(--l, 1); while(r < R) update(++r, 1); while(r > R) update(r--, -1); update(a[i].id); } for(int i = 0; i < m; ++i){ LL g = gcd(ansx[i], ansy[i]); printf("%lld/%lld\n", ansx[i]/g, ansy[i]/g); } return 0; }