题意:给定 n 个点,和权值,他们两两相连,每条边的权值就是他们两个点权值的乘积,任意两点之间的直线不经过原点,让你从原点划一条直线,使得经过的直线的权值和最大。
析:直接进行极角扫描,从水平,然后旋转180度,就可以计算出一个最大值,因为题目说了任意直线不是经过原点的,所以就简单了很多,每次碰到的肯定是一个点,而不是多个点。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 10; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } struct Node{ int x, y, val; double v; }; Node a[maxn]; struct Point{ double v; int id; Point(){ } Point(double vv, int i) : v(vv), id(i) { } bool operator < (const Point &p) const{ return v < p.v; } }; vector<Point> v; int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); v.clear(); LL up = 0, down = 0; for(int i = 1; i <= n; ++i){ scanf("%d %d %d", &a[i].x, &a[i].y, &a[i].val); if(a[i].y < 0) down += a[i].val; else if(a[i].y > 0) up += a[i].val; else if(a[i].x < 0) up += a[i].val; else down += a[i].val; a[i].v = atan2(a[i].y, a[i].x); if(a[i].v < 0.0) v.push_back(Point(a[i].v + PI, i)); else v.push_back(Point(a[i].v, i)); } v.push_back(Point(0, 0)); sort(v.begin(), v.end()); LL ans = up * down; for(int i = 1; i < v.size(); ++i){ if(v[i].v == v[i-1].v) continue; if(a[v[i].id].v >= 0.0){ up -= a[v[i].id].val; down += a[v[i].id].val; } else { up += a[v[i].id].val; down -= a[v[i].id].val; } ans = max(ans, up * down); } printf("%I64d\n", ans); } return 0; }