题意:给定一棵树,每个点有个权值,每条边有权值,每经过边都会消耗相应的权值,但是点的权值只能获得一次,问你从 i 点出发能获得的最大权值是多少。
析:树形DP,就是太麻烦了,两次dfs,维护一共6个值分别是,从 i 出发的最大值并且返回 i, 从 i 出发的最大值并且不返回,从 i 出发的次大值并且不返回,从 i 出发的最大值的子树结点并且不返回,从 i 向父结点出发的最大值并且不返回,从 i 向父结点出发的最大值并且返回。
第一次dfs就能求出前四个,第二个dfs维护后面两个。
答案就是 max(所有子节点返回该节点+ 父亲节点不返回该节点, 有个子节点不返回该节点+从父亲节点返回该节点);
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int val[maxn]; struct Edge{ int to, next, c; }; Edge edge[maxn<<1]; int head[maxn], cnt; int dp[maxn][4]; int ans[maxn]; /* dp[i][0] the most val and back dp[i][1] the most val and not back dp[i][2] the second most val and not back dp[i][3] the the son of the dp[i][1] */ void add_edge(int u, int v, int val){ edge[cnt].to = v; edge[cnt].c = val; edge[cnt].next = head[u]; head[u] = cnt++; } void dfs1(int u, int fa){ dp[u][0] = dp[u][1] = val[u]; dp[u][2] = 0; for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; dfs1(v, u); } for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; int c = edge[i].c; dp[u][0] += max(0, dp[v][0] - 2*c); } for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; int c = edge[i].c; int val = dp[u][0] - max(0, dp[v][0] - 2*c) + max(0, dp[v][1] - c); if(val > dp[u][1]){ dp[u][2] = dp[u][1]; dp[u][1] = val; dp[u][3] = v; } else if(val > dp[u][2]) dp[u][2] = val; } } void dfs2(int u, int fa, int fb, int fnb){ ans[u] = max(fb+dp[u][1], fnb+dp[u][0]); for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; int c = edge[i].c; int newfb = fb + dp[u][0] - max(0, dp[v][0] - 2*c); int newfnb; if(v == dp[u][3]) newfnb = max(fb + dp[u][2] - max(0, dp[v][0]-2*c), fnb + dp[u][0] - max(0, dp[v][0]-2*c)); else newfnb = max(fb + dp[u][1] - max(0, dp[v][0]-2*c), fnb + dp[u][0] - max(0, dp[v][0]-2*c)); dfs2(v, u, max(0, newfb-2*c), max(0, newfnb-c)); } } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); for(int i = 1; i <= n; ++i) scanf("%d", val+i); memset(head, -1, sizeof head); cnt = 0; for(int i = 1; i < n; ++i){ int u, v, c; scanf("%d %d %d", &u, &v, &c); add_edge(u, v, c); add_edge(v, u, c); } dfs1(1, -1); dfs2(1, -1, 0, 0); printf("Case #%d:\n", kase); for(int i = 1; i <= n; ++i) printf("%d\n", ans[i]); } return 0; }