题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小。一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0。
析:DP状态方程很容易想出来,dp[i][j] 表示前 j 个数分成 i 组。但是复杂度是三次方的,肯定会超时,就要对其进行优化。
有两种方式,一种是斜率对其进行优化,是一个很简单的斜率优化
dp[i][j] = min{dp[i-1][k] - w[k] + sum[k]*sum[k] - sum[k]*sum[j]} + w[j] (i-1<=k<j)。sum[i]表示前i个数之和,w[i]表示前i个数分成一组的价值。
第二种方式就是四边形不等式进行优化,
dp[i][j] = min{dp[i-1][k] + w[k+1][j] } w[i][j] 表示第 i 个数到第 j 个数的价值和。
代码如下:
斜率优化:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn], w[maxn]; int a[maxn], sum[maxn]; int q[maxn]; int getUP(int i, int j, int k){ return dp[i-1][j] - w[j] + sum[j] * sum[j] - (dp[i-1][k] - w[k] + sum[k] * sum[k]); } int getDOWN(int i, int j){ return sum[i] - sum[j]; } int getDP(int i, int j){ return dp[i-1][j] - w[j] + sum[j] * sum[j]; } int main(){ while(scanf("%d %d", &n, &m) == 2 && n+m){ for(int i = 1; i <= n; ++i){ scanf("%d", a+i); sum[i] = sum[i-1] + a[i]; w[i] = w[i-1] + a[i] * sum[i-1]; dp[0][i] = w[i]; } for(int i = 1; i <= m; ++i){ int fro = 0, rear = 0; q[++rear] = 0; for(int j = 1; j <= n; ++j){ while(fro + 1 < rear && getUP(i, q[fro+2], q[fro+1]) <= sum[j]*getDOWN(q[fro+2], q[fro+1])) ++fro; dp[i][j] = getDP(i, q[fro+1]) + w[j] - sum[j] * sum[q[fro+1]]; while(fro + 1 < rear && getUP(i, j, q[rear])*getDOWN(q[rear], q[rear-1]) <= getUP(i, q[rear], q[rear-1])*getDOWN(j, q[rear])) --rear; q[++rear] = j; } } printf("%d\n", dp[m][n]); } return 0; }
四边形不等式优化:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[maxn][maxn], w[maxn][maxn]; int a[maxn], sum[maxn], s[maxn][maxn]; int main(){ while(scanf("%d %d", &n, &m) == 2 && n+m){ for(int i = 1; i <= n; ++i){ scanf("%d", a+i); sum[i] = sum[i-1] + a[i]; } for(int i = 1; i <= n; ++i){ w[i][i] = 0; for(int j = i+1; j <= n; ++j) w[i][j] = w[i][j-1] + a[j] * (sum[j-1]-sum[i-1]); } memset(s, 0, sizeof s); for(int i = 0; i <= m; ++i) fill(dp[i], dp[i]+n+1, LNF); for(int i = 1; i <= n; ++i) dp[0][i] = w[1][i]; for(int i = 1; i <= m; ++i){ dp[0][i] = 0; s[i][n+1] = n; for(int j = n; j >= i; --j) for(int k = s[i-1][j]; k <= s[i][j+1]; ++k) if(dp[i][j] > dp[i-1][k] + w[k+1][j]){ dp[i][j] = dp[i-1][k] + w[k+1][j]; s[i][j] = k; } } printf("%I64d\n", dp[m][n]); } return 0; }