题意:要输出N个数字a[N],输出的时候可以连续连续的输出,每连续输出一串,它的费用是 “这串数字和的平方加上一个常数M”。
析:这个题很容易想到DP方程dp[i] = min{dp[j] + M + (sum[i]-sum[j])^2},但是很明显是O(n^2),TLE是必然的,所以要进行优化。
假设 i > j > k ,并且 j 要比 k 好,那么就是 dp[j] + M + (sum[i]-sum[j])^2 < dp[k] + M + (sum[i]-sum[k])^2,
化简 (dp[j]+sum[j]^2-(dp[k]+sum[k]^2))/(2*(sum[j]-sum[k]))<sum[i],仔细看这就是一个斜率,这就说明了 j 比 k 要好,反之 j 比 k 要差。
然后就可以用单调队列进行优化,要删除一些不可能成为最优解的点。分别要队首和队尾进行优化。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 500000 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn], sum[maxn]; int q[maxn]; int DP(int i, int j){ return dp[j] + m + (sum[i] - sum[j]) * (sum[i] - sum[j]); } int UP(int i, int j){ return dp[i] + sum[i] * sum[i] - dp[j] - sum[j] * sum[j]; } int DOWN(int i, int j){ return 2 * (sum[i] - sum[j]); } int main(){ while(scanf("%d %d", &n, &m) == 2){ dp[0] = 0; for(int i = 1; i <= n; ++i){ int x; scanf("%d", &x); sum[i] = x + sum[i-1]; } int fro = 0, rear = 0; q[++rear] = 0; for(int i = 1; i <= n; ++i){ while(fro + 1 < rear && UP(q[fro+2], q[fro+1]) <= sum[i] * DOWN(q[fro+2], q[fro+1])) ++fro; dp[i] = DP(i, q[fro+1]); while(fro + 1 < rear && UP(i, q[rear]) * DOWN(q[rear], q[rear-1]) <= UP(q[rear], q[rear-1]) * DOWN(i, q[rear])) --rear; q[++rear] = i; } printf("%d\n", dp[n]); } return 0; }