题意:给定 n 个点,求最近两个点的距离。
析:直接求肯定要超时的,利用分治法,先把点分成两大类,答案要么在左边,要么在右边,要么一个点在左边一个点在右边,然后在左边或右边的好求,那么对于一个在左边一个在右边的,我们可以先求全在左边或右边的最小值,假设是d,那么一个点在左边,一个点在右边,那么横坐标之差肯定小于d,才能替换d,同样的纵坐标也是,并且这样的点并不多,然后就可以先选出来,再枚举。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e4 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Point{ double x, y; bool operator < (const Point &p) const{ return x < p.x || x == p.x && y < p.y; } }; Point a[maxn]; bool cmp(const Point &lhs, const Point &rhs){ return lhs.y < rhs.y; } double dfs(Point *a, int n){ if(n < 2) return inf; int m = n / 2; double mid = a[m].x; double d = min(dfs(a, m), dfs(a+m, n-m)); vector<Point> y; for(int i = 0; i < n; ++i) if(fabs(mid - a[i].x) < d) y.push_back(a[i]); sort(y.begin(), y.end(), cmp); for(int i = 0; i < y.size(); ++i) for(int j = i+1; j < y.size(); ++j){ if(fabs(y[i].y-y[j].y) >= d) continue; double xx = y[i].x - y[j].x; double yy = y[i].y - y[j].y; d = min(d, sqrt(xx*xx + yy*yy)); } return d; } int main(){ while(scanf("%d", &n) == 1 && n){ for(int i = 0; i < n; ++i) scanf("%lf %lf", &a[i].x, &a[i].y); sort(a, a + n); double ans = dfs(a, n); if(ans >= 10000.0) printf("INFINITY\n"); else printf("%.4f\n", ans); } return 0; }