题意:有 n 个蜡烛,让你插到蛋糕上,每一层要插 k^i个根,第0层可插可不插,插的层数是r,让 r * k 尽量小,再让 r 尽量小,求r 和 k。
析:首先先列出方程来,一个是不插的一个是插的,比如插的是 sigam(0, r, k^i) = n,然后 r 比较小,可以枚举 r,然后二分求 k。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const LL mod = 1e12 + 10; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; LL n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL judge(int mid, int r){ LL sum = 0, t = mid; for(int i = 1; i <= r; ++i, t *= mid){ sum += t; if(sum > mod) return mod; } return sum; } int main(){ while(cin >> n){ int ans = INF; int k = 0, rr; for(int i = 2; i < 41; ++i){ int l = 1, r = (int)sqrt(n+0.5) + 1; int ttt = 0; while(l <= r){ int mid = l + r >> 1; LL t = judge(mid, i); if(t == n || t == n-1){ ttt = mid; break; } else if(t < n-1) l = mid + 1; else r = mid - 1; } if(ttt > 0 && ttt * i < ans){ ans = ttt * i; k = ttt; rr = i; } } if(k == 0 || k == 1) printf("1 %I64d\n", n-1); else printf("%d %d\n", rr, k); } return 0; }