题意:给n个点,每个点有一个人,有n-1条有权值的边,求所有人不在原来位置所移动的距离的和最大值。
析:对于每边条,我们可以这么考虑,它的左右两边的点数最少的就是要加的数目,因为最好的情况就是左边到右边,右边到左边,然后用dfs就可以解决了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1000; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int v, val, next; }; Node a[maxn<<1]; int head[maxn]; int cnt; void add(int u, int v, int val){ a[cnt].v = v; a[cnt].val = val; a[cnt].next = head[u]; head[u] = cnt++; } LL ans; int num[maxn]; void dfs(int u, int fa){ for(int i = head[u]; ~i; i = a[i].next){ int v = a[i].v; if(v == fa) continue; dfs(v, u); num[u] += num[v]; ans += (LL)a[i].val * min(num[v], n-num[v]); } ++num[u]; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); memset(head, -1, sizeof head); cnt = 0; for(int i = 1; i < n; ++i){ int u, v, val; scanf("%d %d %d", &u, &v, &val); add(u, v, val); add(v, u, val); } ans = 0; memset(num, 0, sizeof num); dfs(1, -1); printf("Case #%d: %I64d\n", kase, ans*2LL); } return 0; }