题意:给定两个数的n和m,有一种操作,把 n 的各位数字加起来放到 n后面形成一个新数n,问重复 m 次所得的数能否整除 11。
析:这个题首先要知道一个规律奇数位的和减去偶数位的和能被11整除的数字一定能被11整除。当然不知道这个题也可以过,直接模拟。
还有几个其他的规律;
被3整除:每位的和能被3整除即可;
被4整除:末尾两位能被4整除即可;
被7整除:将个位数字截去,在余下的数中减去个位数字的二倍,差是7的倍数即可;(可以递归)
被8整除:末尾三位能被8整除即可;
被9整除:每位的和能被9整除即可;
被11整除:第一种方法就是用上面说的,还有一种是采用和“被7整除”一样的方法,不过要减去的是个位的一倍;
被12整除:同时被3和4整除;
被13整除:同“被7整除”,不过我们不是要减去,而是要加上个位的四倍;
被17整除:同“被7整除”,不过要减去的是个位数的五倍;
被19整除:同“被7整除”,不过要加上个位数的两倍;
代码如下:
直接模拟:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 10 + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[30]; int calc(int sum, int &ans){ int cnt = 0; while(sum){ a[cnt++] = sum % 10; sum /= 10; } for(int i = cnt-1; i >= 0; --i){ ans = (ans * 10 + a[i]) % 11; sum += a[i]; } return sum; } int main(){ int kase = 0; while(scanf("%d %d", &n, &m) == 2){ if(-1 == m && -1 == n) break; int ans = 0; int sum = calc(n, ans); for(int i = 0; i < m; ++i) sum += calc(sum, ans); printf("Case #%d: %s\n", ++kase, ans ? "No" : "Yes"); } return 0; }
使用规律:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 10 + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[30]; int calc(int &odd, int &even, int sum, bool &ok){ int cnt = 0; while(sum){ a[cnt++] = sum % 10; sum /= 10; } for(int i = cnt-1; i >= 0; --i, ok = !ok){ if(ok) odd += a[i]; else even += a[i]; } return odd + even; } int main(){ int kase = 0; while(scanf("%d %d", &n, &m) == 2){ if(-1 == m && -1 == n) break; int even = 0, odd = 0; bool ok = true; int sum = calc(odd, even, n, ok); for(int i = 0; i < m; ++i){ int dodd = 0, deven = 0; sum += calc(dodd, deven, sum, ok); odd += dodd; even += deven; } int det = odd - even; printf("Case #%d: %s\n", ++kase, det % 11 ? "No" : "Yes"); } return 0; }