题意:给定一个序列,让你求两种数,一个是求一个子序列,包含最大值和最小值,再就是求一个子集包含最大值和最小值。
析:求子序列,从前往记录一下最大值和最小值的位置,然后从前往后扫一遍,每个位置求一下数目就好。
求子集可以用排列组合解决,很简单,假设最大值个数是 n,最小值的数是 m,总数是 N,答案就是 (2^n-1) * (2^m-1)*2^(N-m-n),
当然要特殊判断最大值和最小值相等的时候。
当然也可以用容斥来求,就是总数 - 不是最大值的数目 - 不是最小值的数目 + 不是最大值也不是最小值的数目,其实也差不多
代码如下:
排列组合:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL fast_pow(int n){ LL a = 2, ans = 1; while(n){ if(n & 1) ans = ans * a % mod; n >>= 1; a = a * a % mod; } return ans; } int a[maxn]; vector<int> v1, v2; int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); int mmin = mod, mmax = 0; for(int i = 0; i < n; ++i){ scanf("%d", a+i); mmin = min(mmin, a[i]); mmax = max(mmax, a[i]); } v1.clear(); v2.clear(); for(int i = 0; i < n; ++i) if(mmin == a[i]) v1.push_back(i); else if(mmax == a[i]) v2.push_back(i); if(v1.size() == n){ LL ans1 = (LL)n * (n+1) / 2 % mod; LL ans2 = (fast_pow(n) - 1 % mod) % mod; printf("%lld %lld\n", ans1, ans2); continue; } LL ans2 = (fast_pow(v1.size())-1) * (fast_pow(v2.size())-1) % mod * fast_pow(n-v1.size()-v2.size()) % mod; ans2 = (ans2 + mod) % mod; int i = 0, j = 0, pre = 0; LL ans1 = 0; while(true){ int t1 = min(v1[i], v2[j]); int t2 = max(v1[i], v2[j]); ans1 = (ans1 + (LL)(t1-pre+1) * (n-t2)) % mod; v1[i] < v2[j] ? ++i : ++j; if(i == v1.size() || v2.size() == j) break; pre = min(t1+1, min(v1[i], v2[j])); } printf("%lld %lld\n", ans1, ans2); } return 0; }
容斥:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL fast_pow(int n){ LL a = 2, ans = 1; while(n){ if(n & 1) ans = ans * a % mod; n >>= 1; a = a * a % mod; } return ans; } int a[maxn]; vector<int> v1, v2; int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); int mmin = mod, mmax = 0; for(int i = 0; i < n; ++i){ scanf("%d", a+i); mmin = min(mmin, a[i]); mmax = max(mmax, a[i]); } v1.clear(); v2.clear(); for(int i = 0; i < n; ++i) if(mmin == a[i]) v1.push_back(i); else if(mmax == a[i]) v2.push_back(i); if(v1.size() == n){ LL ans1 = (LL)n * (n+1) / 2 % mod; LL ans2 = (fast_pow(n) - 1 % mod) % mod; printf("%lld %lld\n", ans1, ans2); continue; } LL ans2 = fast_pow(n); ans2 = (ans2 - fast_pow(n-v1.size()) - fast_pow(n-v2.size()) + fast_pow(n-v1.size()-v2.size())) % mod; ans2 = (ans2 % mod + mod) % mod; int i = 0, j = 0, pre = 0; LL ans1 = 0; while(true){ int t1 = min(v1[i], v2[j]); int t2 = max(v1[i], v2[j]); ans1 = (ans1 + (LL)(t1-pre+1) * (n-t2)) % mod; v1[i] < v2[j] ? ++i : ++j; if(i == v1.size() || v2.size() == j) break; pre = min(t1+1, min(v1[i], v2[j])); } printf("%lld %lld\n", ans1, ans2); } return 0; }