题意:给你n 个座位,和m 个人, 安排在一个圆桌子上,要求任意两个人之间的座位至少为k 个,求方案数,答案对1e9取模。
析:一开始,我没看到是圆桌,推出一个非圆桌的,但是一换成圆桌,当时脑子就乱,先求出至少要占用多少座位,学生和空座位。
那么就剩下了 n - m - m * k 个空座位,问题就成了,假设 c = n - m - m * k,在 m 的空隙插入 c 个座位有多少种,也就是C(c+m-1, m-1)。
然后每个座位是不同的,所以每个人位置不一样再乘以 n (也就是第一个学生的位置),然后每个人 又是一样的再除以 m。
最后答案就成了 C(c+m-1, m-1) * n / m,然而交上去,并不对,要特殊判断 m 为 1的情况,答案恒为 n。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 10; const int mod = 1000000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL inv[maxn]; LL f[maxn], fact[maxn]; LL C(int n, int m){ return fact[n] * f[m] % mod * f[n-m] % mod; } int main(){ fact[0] = fact[1] = 1; f[1] = inv[1] = 1; for(int i = 2; i < maxn; ++i){ inv[i] = (mod - mod/i) * inv[mod%i] % mod; f[i] = f[i-1] * inv[i] % mod; fact[i] = fact[i-1] * i % mod; } int T; cin >> T; while(T--){ int k; scanf("%d %d %d", &n, &m, &k); int c = n - m - m * k; if(m == 1){ printf("%d\n", n); continue; } if(c < 0){ printf("0\n"); continue; } LL ans = C(c+m-1, m-1) * n % mod * inv[m] % mod; cout << ans << endl; } return 0; }