题意:给一个起点和终点相同的图,一个矩阵表示各个点之间的距离,求经过所有的点,回到原点的最下路径,点可以重复走。
析:dp[s][i] 表示当前在 i 结点,还要遍历 s 的所有点并回到原点 0 的最短时间,状态转移方程也很简单。
dp[s][i] = min{dp[s|j][j] + d[i][j] }
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 10; const int mod = 100000000; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[1<<11][12]; int a[15][15]; int main(){ while(scanf("%d", &n) == 1 && n){ memset(dp, INF, sizeof dp); for(int i = 0; i <= n; ++i) for(int j = 0; j <= n; ++j) scanf("%d", &a[i][j]); int all = 1 << n+1; dp[all-1][0] = 0; for(int i = all-2; i >= 0; --i) for(int j = 0; j <= n; ++j) for(int k = 0; k <= n; ++k) dp[i][j] = min(dp[i][j], dp[i|(1<<k)][k] + a[j][k]); printf("%d\n", dp[0][0]); } return 0; }