题意:给定一个n*m的01矩阵,然后求有多少种方式,在1上并且1不相邻。
析:一个简单的状压DP,dp[i][s] 表示 第 i 行状态为 s 时有多少种,然后只要处理不相邻就行了,比赛进位运算写错了一个地方。。。。。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 100000000; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[15][1<<12]; int val[15]; bool judge(int s){ for(int i = 1; i < m; ++i) if((s&(1<<i)) && (s&(1<<i-1))) return false; return true; } bool judge2(int i, int s){ for(int j = 0; j < m; ++j) if((s&(1<<j)) && !(val[i]&(1<<j))) return false; return true; } int main(){ while(scanf("%d %d", &n, &m) == 2){ memset(dp, 0, sizeof dp); memset(val, 0, sizeof val); for(int i = 1; i <= n; ++i) for(int j = 0; j < m; ++j){ int x; scanf("%d", &x); if(x) val[i] |= (1<<j); } int all = 1<<m; for(int i = 1; i <= n; ++i){ for(int j = 0; j < all; ++j){ if(!judge(j)) continue; if(!judge2(i, j)) continue; if(1 == i){ dp[i][j] = 1; continue; } int t = 0; for(int k = 0; k < m; ++k) if(!(j&(1<<k))) t |= 1<<k; dp[i][j] = dp[i-1][0]; for(int k = t; k; k = (k-1)&t) if(judge(k)) dp[i][j] = (dp[i][j] + dp[i-1][k]) % mod; } } LL ans = 0; for(int i = 0; i < all; ++i) ans = (ans + dp[n][i]) % mod; cout << ans << endl; } return 0; }