题意:要求输入一篇N个字符的文章,对所有非负整数i:每到第i+0.1秒时可以输入一个文章字符,每到第i+0.9秒时有P的概率崩溃(回到开头或者上一个存盘点)
每到第i秒有一次机会可以选择按下X个键存盘,或者不存,打印完整篇文章之后必须存盘一次才算完成输入多组N,P,X选择最佳策略使得输入完整篇文章时候按键的期望最小,
输出此期望
析:dp[i]表示打完前 i 个字符,概论是多少,dp[i] = dp[i-1] + p(1+dp[i]) + 1-p。然后解得dp[i] = (dp[i-1]+1) / (1-p)。
最后再枚举多少次保存。均匀分布是最优的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } double dp[maxn]; int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ double p; scanf("%d %lf %d", &n, &p, &m); dp[0] = 0; for(int i = 1; i <= n; ++i) dp[i] = (dp[i-1]+1) / (1-p); double ans = inf; for(int i = 1; i <= n; ++i){ int a = n / i; int b = n % i; ans = min(ans, dp[a+1] * b + dp[a] * (i-b) + (double)m*i); } printf("Case #%d: %f\n", kase, ans); } return 0; }