题意:有一个由1到k组成的序列,最小是1 2 … k,最大是 k k-1 … 1,给出n的计算方式,n = s0 * (k - 1)! + s1 * (k - 2)! +… + sk-1 * 0!,
给出s1…sk,输出序列里第n大的序列。
析:我们先看第一数,如果第一个数是2,那么它前面至少有(k-1)!个排列,然后1开头肯定比2要小,同理,再考虑第二个数,在考虑再二数时,
要注意把已经搞定的数去掉,所以我们用线段树进行单点更新,当然也可以用二分+数状数组。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 5e4 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int sum[maxn<<2]; void push_up(int rt){ sum[rt] = sum[rt<<1] + sum[rt<<1|1]; } void build(int l, int r, int rt){ if(l == r){ sum[rt] = 1; return ; } int m = l+r >> 1; build(lson); build(rson); push_up(rt); } int query(int x, int l, int r, int rt){ if(l == r){ sum[rt] = 0; return l; } int m = l+r >> 1; int ans; if(sum[rt<<1] >= x) ans = query(x, lson); else ans = query(x-sum[rt<<1], rson); push_up(rt); return ans; } int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); build(1, n, 1); for(int i = 0; i < n; ++i){ if(i) putchar(' '); scanf("%d", &m); printf("%d", query(m + 1, 1, n, 1)); } printf("\n"); } return 0; }