题意:给按顺序给定 n 个人群,用x和y来描述,如果有没有任何一个x' < x y' <= y 或 x '<= x y' <= y,那么这个群体就是优势群体,
让你求出每放入一个人群,已经知道的群体有几个优势群体。
析:首先我们知道的是,如果某个群体失去了优势,那么该群体就不可能再获得优势,然后我们把已经得到的优势群体按x 从小到大排序,
那么得到曲线是一个向下的也就是严格递减的,所以我们就可以用multiset来维护所有的优势群体,然后我们考虑每加入一个群体,
如果在坐标上画出来的满足该要求,那么就是有优势,然后再删掉后面没有优势的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int x, y; bool operator < (const Node &p) const{ return x < p.x || (x == p.x && y < p.y); } }; multiset<Node> sets; multiset<Node> :: iterator it; int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ if(kase > 1) printf("\n"); sets.clear(); printf("Case #%d:\n", kase); scanf("%d", &n); for(int i = 0; i < n; ++i){ int x, y; scanf("%d %d", &x, &y); it = sets.lower_bound((Node){x, y}); if(it == sets.begin() || (--it)->y > y){ sets.insert((Node){x, y}); it = sets.upper_bound((Node){x, y}); while(it != sets.end() && it->y >= y) it = sets.erase(it); } printf("%d\n", sets.size()); } } return 0; }