题意:单源最短路,给你一些路,给你这些路的长度,给你修这些路的话费,求最短路和最小花费。
析:本质就是一个最短路,不过要维护两个值罢了,在维护花费时要维护的是该路要花多少,而不是总的路线花费。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int v, c, d; }; vector<Node> G[maxn]; struct node{ int u; LL d, c; node(){ } node(int uu, LL dd, LL cc) : u(uu), d(dd), c(cc) { } bool operator < (const node &p) const{ return d > p.d || (d == p.d && c > p.c); } }; LL d[maxn], c[maxn]; void solve(){ priority_queue<node> pq; pq.push(node(0, 0, 0)); d[0] = c[0] = 0; while(!pq.empty()){ node U = pq.top(); pq.pop(); int u = U.u; for(int i = 0; i < G[u].size(); ++i){ Node &V = G[u][i]; int v = V.v; if(d[v] > d[u] + V.d){ d[v] = d[u] + V.d; c[v] = V.c; pq.push(node(v, d[v], c[v])); } else if(d[v] == d[u] + V.d && c[v] > V.c){ c[v] = V.c; pq.push(node(v, d[v], c[v])); } } } LL ans1 = 0, ans2 = 0; for(int i = 1; i < n; ++i){ ans1 += d[i]; ans2 += c[i]; } printf("%lld %lld\n", ans1, ans2); } int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); for(int i = 0; i < n; ++i){ G[i].clear(); c[i] = d[i] = LNF; } for(int i = 0; i < m; ++i){ int x; Node u; scanf("%d %d %d %d", &x, &u.v, &u.d, &u.c); G[x].push_back(u); swap(x, u.v); G[x].push_back(u); } solve(); } return 0; }