题意:有n堆石子,每个人只能从某一堆至少拿走一个,不能拿者败。问事先拿走某些堆的石子,使得先手必败。
析:将石子拆成二进制,未知数为1表示保留该堆石子,为0表示事先拿走该堆石子。最后求自由变元的数目,就是2的幂。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 10; const int mod = 1000007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int equ, var, free_num; bool a[maxn][maxn]; int Gauss(){ int max_r, col, k; free_num = 0; for(k = col = 0; k < equ && col < var; ++k, ++col){ max_r = k; for(int i = k+1; i < equ; ++i) if(a[i][col] > a[max_r][col]) max_r = i; if(a[max_r][col] == 0){ --k; ++free_num; continue; } if(max_r != k){ for(int i = col; i <= var; ++i) swap(a[k][i], a[max_r][i]); } for(int i = k+1; i < equ; ++i) if(a[i][col]) for(int j = col; j <= var; ++j) a[i][j] ^= a[k][j]; } return var - k; } int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); for(int i = 0; i < n; ++i){ scanf("%d", &m); for(int j = 0; j < 31; ++j) a[j][i] = (m&(1<<j)); } for(int i = 0; i < 31; ++i) a[i][n] = 0; equ = 31; var = n; int t = Gauss(); int ans = 1; for(int i = 0; i < t; ++i) ans = ans * 2 % mod; printf("%d\n", ans); } return 0; }