题意:
Alice和Bob正在下古代围棋,规则如下:
- 棋盘有8×8个格子,棋子下在棋盘的交叉点上,故可以有9×9个落子的位置
- Alice执黑棋Bob执白棋轮流落子
- 与棋子直线相连的空白交叉点叫做气。当这些气都被对方棋子占据后,该棋子就没有了“气”,要被从棋盘上提掉。如果棋子的相邻(仅上下左右)直线交叉点上有了同色的棋子,则这两个棋子被叫做相连的。任意多个棋子可以以此方式联成一体,连成一体的棋子的气的数目是所有组成这块棋的单个棋子气数之和。如果这些气都被异色棋子占领,这块棋子就要被一起提掉。
- 当一方落子后,先检查对手的棋子,将没有“气”的对手的棋子从棋盘上提掉,再检查该方的棋子,将没有“气”的棋子提掉
现在该Alice落子,请判断Alice能否在某处落子使Bob至少有一颗棋子 被 从棋盘上提掉
析:由于格子只是9*9而已,直接枚举每个点,然后判断能不能提掉Bob的至少一个棋子即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 10 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } char s[maxn][maxn]; bool vis[maxn][maxn]; bool dfs(int r, int c){ if(s[r][c] == '.') return false; vis[r][c] = 1; for(int i = 0; i < 4; ++i){ int x = r + dr[i]; int y = c + dc[i]; if(!is_in(x, y) || vis[x][y] || s[x][y] == 'x') continue; if(!dfs(x, y)) return false; } return true; } bool solve(){ for(int i = 0; i < n; ++i) for(int j = 0; j < m; ++j) if(s[i][j] == 'o'){ memset(vis, 0, sizeof vis); if(dfs(i, j)) return true; } return false; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ n = m = 9; for(int i = 0; i < n; ++i) scanf("%s", s+i); bool ok = false; for(int i = 0; i < 9 && !ok; ++i) for(int j = 0; j < 9 && !ok; ++j){ if(s[i][j] == '.'){ s[i][j] = 'x'; ok = solve(); s[i][j] = '.'; } } printf("Case #%d: %s\n", kase, ok ? "Can kill in one move!!!" : "Can not kill in one move!!!"); } return 0; }