题意:给定两个整数,两个人轮流操作,每次可以用较大数减去较小数的整数倍,当一个数变成0时,则结束,问谁会胜。
析:很明显如果 a == b 那么就可以直接结束了,那么如果 a > b我们可以交换两个数,保证 a < b。可以分成两类,
(1) b - a < a (2) b - a > a
对于第一类,只能一种拿法,只能是从 b 中拿去 a。对于第二种,如果 b 减去 a 后是必败态,那么当前就是必胜态,如果得到是必胜态,那么当前就是必败态,
我们假设 b - ax < a,如果 b - a(x-1)后是必败态,那么就可以直接减去,如果 b - a(x-1) 后是必胜态,那让b - ax 得到就是必败态。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 10; const int mod = 1e6 + 10; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int main(){ while(scanf("%d %d", &n, &m) == 2 && m+n){ bool ok = true; while(1){ if(m > n) swap(m, n); if(n % m == 0) break; if(n - m > m) break; n -= m; ok = !ok; } printf("%s\n", ok ? "Stan wins" : "Ollie wins"); } return 0; }