题意:给一个字符串,把它分为k块,每一块里面的字母可以任意的排序。最终字符串, 连续的一样的字母算作一个chunk,问总chunks最少是多少?
析:dp[i][j] 表示第 i 个块,第 j 位在末尾时chunk最少,状态转移方程也应该好写,如果 dp[i-1][j] 和第 i 块第一个一样,那么就总数就会-1,
否则就是直接加上。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <unordered_map> #include <unordered_set> #define debug() puts("++++"); #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1LL << 60; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1000 + 5; const int mod = 2000; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn]; char s[maxn]; int a[maxn]; bool vis[30]; int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); int cnt = 0; scanf("%s", s); int len = strlen(s); int t = len / n; memset(dp, INF, sizeof dp); memset(vis, false, sizeof vis); for(int i = 0; i < n; ++i) vis[s[i]-'a'] = true; for(int i = 0; i < 26; ++i) if(vis[i]) ++cnt; for(int i = 0; i < n; ++i) dp[0][i] = cnt; for(int i = 1; i < t; ++i){ cnt = 0; memset(vis, false, sizeof vis); for(int j = i*n; j < (i+1)*n; ++j) vis[s[j]-'a'] = true; for(int j = 0; j < 26; ++j) if(vis[j]) ++cnt; for(int j = 0; j < n; ++j){ int fro = i * n + j; for(int k = 0; k < n; ++k){ int rear = (i-1) * n + k; if(vis[s[rear]-'a'] && (1 == cnt || s[rear] != s[fro])) dp[i][j] = min(dp[i][j], dp[i-1][k] + cnt - 1); else dp[i][j] = min(dp[i][j], dp[i-1][k] + cnt); } } } int ans = INF; for(int i = 0; i < n; ++i) ans = min(ans, dp[t-1][i]); printf("%d\n", ans); } return 0; }