题意:给定一个图,求一条1-n的次短路。
析:次短路就是最短路再长一点呗,我们可以和求最短路一样,再多维护一个数组,来记录次短路。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 5000 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } vector<int> G[maxn], w[maxn]; int d1[maxn], d2[maxn]; int dijkstra(){ priority_queue<P, vector<P>, greater<P> > pq; pq.push(P(0, 1)); memset(d1, INF, sizeof d1); memset(d2, INF, sizeof d2); d1[1] = 0; while(!pq.empty()){ P p = pq.top(); pq.pop(); int v = p.second, d = p.first; if(d2[v] < d) continue; for(int i = 0; i < G[v].size(); ++i){ int u = G[v][i]; int dd = d + w[v][i]; if(d1[u] > dd){ swap(dd, d1[u]); pq.push(P(d1[u], u)); } if(d1[u] == dd) continue; if(d2[u] > dd){ d2[u] = dd; pq.push(P(d2[u], u)); } } } return d2[n]; } int main(){ while(scanf("%d %d", &n, &m) == 2){ for(int i = 1; i <= n; ++i) G[i].clear(), w[i].clear(); for(int i = 0; i < m; ++i){ int u, v, val; scanf("%d %d %d", &u, &v, &val); G[u].push_back(v); G[v].push_back(u); w[u].push_back(val); w[v].push_back(val); } printf("%d\n", dijkstra()); } return 0; }