题意:有一栋100层的大楼(标号为0~99),里面有n个电梯(不超过5个),以及要到达的层数(aid),然后是每个电梯走一层所需的时间,
再n行就是对应每个电梯可以到达的层数,数量不定。然后每装换一次电梯需要等待60秒,问,最快能多快到达目标层数。
析:把所有的楼层当作结点,电梯能到达的不同楼层之间连一边,权值就是时间,然后在跑最短路时,在每个结点都加入60秒,
由于在第0层等待不用60秒,最后再减去即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int G[maxn][maxn]; int v[maxn]; int calc(const string &s){ int ans = 0; for(int i = 0; i < s.size(); ++i) ans = ans * 10 + s[i] - '0'; return ans; } int d[maxn]; int dijkstra(){ priority_queue<P, vector<P>, greater<P> > pq; pq.push(P(0, 0)); memset(d, INF, sizeof d); d[0] = 0; while(!pq.empty()){ P p = pq.top(); pq.pop(); int v = p.second; // printf("%d\n", v); if(v == m) return p.first; if(d[v] < p.first) continue; for(int i = 0; i < 100; ++i){ if(G[v][i] == INF) continue; if(d[i] > d[v] + G[v][i] + 60){ d[i] = d[v] + G[v][i] + 60; pq.push(P(d[i], i)); } } } return -1; } int main(){ while(cin >> n >> m){ for(int i = 0; i < n; ++i) cin >> v[i]; cin.get(); memset(G, INF, sizeof G); for(int i = 0; i < n; ++i){ string line; getline(cin, line); stringstream ss(line); string s; vector<int> vv; while(ss >> s) vv.push_back(calc(s)); sort(vv.begin(), vv.end()); for(int j = 0; j < vv.size(); ++j) for(int k = j+1; k < vv.size(); ++k) G[vv[j]][vv[k]] = G[vv[k]][vv[j]] = min(G[vv[j]][vv[k]], (vv[k]-vv[j])*v[i]); } if(m == 0){ cout << "0" << endl; continue; } int ans = dijkstra(); if(ans == -1) cout << "IMPOSSIBLE" << endl; else cout << ans - 60 << endl; } return 0; }
有一栋100层的大楼(标号为0~99),里面有n个电梯(不超过5个),以及要到达的层数(aid),然后是每个电梯走一层所需的时间,再n行就是对应每个电梯可以到达的层数,数量不定。然后每装换一次电梯需要等待60秒,问,最快能多快到达目标层数。