题意:n 个人成一个圈,每个人想要 ri 种不同的礼物,要求相邻两个人没有相同的,求最少需要多少礼物。
析:如果 n 是偶数,那么答案一定是相邻两个人的礼物总种数之和的最大值,那么如果是奇数,就没那么好做了,我们可以二分答案,
在每次判定时,我们可以有这样的贪心策略,第一个人 1 - r1,在后面的人中,编号为奇数的尽量往后取,编号为偶数的尽量往前取,
因为这样我们才能保证第 n 个人和第一个人尽量不相交。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <unordered_map> #include <unordered_set> #define debug() puts("++++"); #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const int mod = 2000; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int l[maxn], r[maxn]; bool judge(int mid){ l[1] = a[1], r[1] = 0; int x = a[1], y = mid - a[1]; for(int i = 2; i <= n; ++i){ if(i & 1){ r[i] = min(a[i], y-r[i-1]); l[i] = a[i] - r[i]; if(l[i] + l[i-1] > x) return false; } else{ l[i] = min(a[i], x-l[i-1]); r[i] = a[i] - l[i]; if(r[i] + r[i-1] > y) return false; } } return l[n] == 0; } int solve(){ if(n & 1){ int l = 1, r = 5e5; while(l < r){ int mid = (r + l) >> 1; if(judge(mid)) r = mid; else l = mid + 1; } return l; } int ans = 0; for(int i = 1; i <= n; ++i) ans = max(ans, a[i] + a[i+1]); return ans; } int main(){ while(scanf("%d", &n) == 1 && n){ for(int i = 1; i <= n; ++i) scanf("%d", a+i); if(1 == n){ printf("%d\n", a[1]); continue; } a[n+1] = a[1]; printf("%d\n", solve()); } return 0; } /* 9 8 15 35 16 21 90 55 50 32 */