题意:给定一个长度为n的整数序列,两个人轮流从左端或者右端拿数,A先取,问最后A的得分-B的得分的结果。
析:dp[i][j] 表示序列 i~j 时先手得分的最大值,然后两种决策,要么从左端拿,要么从右端拿,肯定是拿的是最大的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <unordered_map> #include <unordered_set> #define debug() puts("++++"); #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn], sum[maxn], a[maxn]; int f[maxn][maxn], g[maxn][maxn]; int main(){ while(scanf("%d", &n) == 1 && n){ for(int i = 1; i <= n; ++i) scanf("%d", a+i); sum[0] = 0; for(int i = 1; i <= n; ++i){ f[i][i] = g[i][i] = dp[i][i] = a[i]; sum[i] = sum[i-1] + a[i]; } for(int l = 1; l < n; ++l) for(int i = 1; i+l <= n; ++i){ int j = i + l; int mmin = 0; mmin = min(mmin, f[i+1][j]); mmin = min(mmin, g[i][j-1]); dp[i][j] = sum[j] - sum[i-1] - mmin; f[i][j] = min(dp[i][j], f[i+1][j]); g[i][j] = min(dp[i][j], g[i][j-1]); } printf("%d\n", 2*dp[1][n] - sum[n]); } return 0; }