题意:用不超过 n 根火柴,组成一个尽可能大的数。
析:很明显的一个DP题,首先不难想到这个dp[i][j] 表示前 i 根火柴,所能拼出的取模 m 为 j 的数,状态转移方程也很好写,
dp[i][j] ==> dp[i+c[k]][(j*10+k)%m] 其中 k 为在后面添加的数,c 数组是用的火柴数,这个方程没问题,就是效率有点低,
因为有一个高精度问题,可以用Java来实现,也能够AC的。
第二种方法就是换一个表示方法,不过确实不太容易想到。dp[i][j] 表示用最多 i 根火柴,取模 m 的数的最大位数。毕竟位数越大,数越大。
状态转移方程也是和上面差不多就是变成位数了而已。
代码如下:
import java.math.BigInteger; import java.util.*; public class Main{ public static final int maxn = 100 + 10; public static final int maxm = 3000 + 10; public static BigInteger[][] ans; public static int[] c; public static BigInteger solve(int n, int m){ for(int i = 0; i <= n; ++i) for(int j = 0; j < m; ++j) ans[i][j] = BigInteger.valueOf(-1); ans[0][0] = BigInteger.ZERO; BigInteger res = BigInteger.valueOf(-1); for(int i = 0; i <= n; ++i){ for(int j = 0; j < m; ++j){ if(ans[i][j].equals(BigInteger.valueOf(-1))) continue; for(int k = 0; k < 10; ++k){ if(i +c[k] > n) continue; ans[i+c[k]][(j*10+k)%m] = ans[i+c[k]][(j*10+k)%m].max(ans[i][j].multiply(BigInteger.valueOf(10)).add(BigInteger.valueOf(k))); } } if(i > 1 && res.compareTo(ans[i][0]) < 0) res = ans[i][0]; } return res; } public static void main(String []args){ c = new int[15]; ans = new BigInteger[maxn][maxm]; c[0] = 6; c[1] = 2; c[2] = 5; c[3] = 5; c[4] = 4; c[5] = 5; c[6] = 6; c[7] = 3; c[8] = 7; c[9] = 6; Scanner cin = new Scanner(System.in); int kase = 0; while(cin.hasNext()){ int n = cin.nextInt(); if(0 == n) break; int m = cin.nextInt(); System.out.println("Case " + (++kase) +": " + solve(n, m)); } cin.close(); } }
第二种方法:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-5; const int maxn = 2600 + 10; const int mod = 1e6; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[110][3010], p[110][3010]; const int c[] = { 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 }; int main(){ int kase = 0; while(scanf("%d %d", &n, &m) == 2 && n){ printf("Case %d: ", ++kase); for(int i = 0; i <= n; ++i) for(int j = 0; j < m; ++j){ int &ans = dp[i][j]; ans = p[i][j] = -1; if(!j) ans = 0; for(int k = 9; k >= 0; --k) if(i >= c[k]){ int t = dp[i-c[k]][(j*10+k)%m] + 1; if(t > 0 && t > ans){ ans = t; p[i][j] = k; } } } if(dp[n][0] <= 0) printf("-1"); else{ int i = n, j = 0; for(int d = p[i][j]; d >= 0; d = p[i][j]){ printf("%d", d); i -= c[d]; j = (j*10 + d) % m; } } printf("\n"); } return 0; }