题意:汉诺塔,给定一个初始局面,和一个目标局面,问你最少走多少步。
析:首先考虑最大的盘子,如果最大的盘子已经在相应的柱子上,那么就不用移动了,所以首先先找到要移动的最大盘子k,然后再移动最大的盘子,假设要把它从1移动到2,
那么我们先把1-k-1,移动到3号柱子上,这个局面称为参考局面,那么我们可以这样考虑,把初始状态和目标状态移动成目标局面,然后再移动k即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <unordered_map> #include <unordered_set> #define debug() puts("++++"); #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e4 + 5; const int mod = 2000; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[65], b[65]; LL f(int *a, int k, int ff){ if(!k) return k; if(a[k] == ff) return f(a, k-1, ff); return f(a, k-1, 6-a[k]-ff) + (1LL<<k-1); } int main(){ int kase = 0; while(scanf("%d", &n) == 1 && n){ for(int i = 1; i <= n; ++i) scanf("%d", a+i); for(int i = 1; i <= n; ++i) scanf("%d", b+i); int k = n; while(k && a[k] == b[k]) --k; LL ans = 0; if(k > 0) ans = f(a, k-1, 6-a[k]-b[k]) + f(b, k-1, 6-a[k]-b[k]) + 1; printf("Case %d: %lld\n", ++kase, ans); } return 0; }